Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 October 2023 | Story Reuben Maeko | Photo SUPPLIED
Dr Tabane
Dr Lizzy Tabane, Head of Paediatrics and Child Health in the Faculty of Health Sciences at the University of the Free State, gives a message of support at the 2023 SAPA Conference.

The Department of Paediatrics and Child Health at the University of the Free State (UFS) recently hosted the 2023 South African Paediatric Association conference (SAPA) in Sandton, Johannesburg, with more than 200 doctors, specialists and registrars in attendance. 

The conference aimed to provide high-quality, evidence-based updates on children’s health issues and research in health care. The three-day conference focused on presentations from various paediatricians in South Africa’s health sectors.

Conference presentations 

The conference explored new ways of treating different types of childhood diseases, and covered a range of topics such as learning disabilities and inclusive education, sports for children with asthma, septic shock, dyslipidaemia in children, congenital heart disease among others.

Collaborations with healthcare professionals

Head of Paediatrics and Child Health at the UFS, Dr Lizzy Tabane and her colleagues, Dr Mampoi Jonas and Prof Ute Hallbauer, were pleased with the success and outcome of the conference. 

According to Dr Tabane, the professionals gather once a year to learn, exchange ideas and work together to ensure the best possible care for children in hospitals. 

“The SAPA conference presents health professionals across South Africa with the latest information on paediatric health. It also ensures that children in our country continue to receive quality care through an integrated approach by allowing health professionals to connect, network, and share their knowledge and expertise,” said Dr Jonas.

“The country and the community at large are in good hands,” said Dr Tabane. “Let us not fall behind but catch up with the latest innovations, for instance, Artificial Intelligence and Machine Learning in Medicine. Our partnership with all paediatrics and other health professionals will bring unity and good child health care in our country."

“What is important is the tremendous support from all the specialists, doctors and practice nurses from different health-care departments who have consistently turned out in large numbers. The success of the conference extends beyond GPs, such as drawing in specialists, clinicians, nurses, and professionals dedicated to children’s well-being within hospitals and the community,” emphasised Dr Tabane.

Significance of the conference

Prof Hallbauer emphasised the significance of fostering collaboration to enhance integrated care, spanning both the hospital system and primary care. “This annual conference confirms our commitment to working together as doctors for the well-being of our patients. The motto we have chosen is Carpe Diem ‘Seize the Day’. For the conference this means taking hold of the programme and making the most of each conference day. 

“When you meet your colleagues, build and strengthen the collegial networks, so that we can realise Letshwele le beta phoho – a SeSotho idiom meaning ‘The crowd beats the bull’,” added Prof Hallbauer. 

This conference “will strengthen our relationship” with other doctors and make the health system a better place, concluded Prof Hallbauer. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept