Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 September 2023 | Story Samkelo Fetile

The University of the Free State (UFS) is set to host a compelling book launch event, exploring the lasting legacy of apartheid. This thought-provoking gathering is organised by the Deputy Vice-Chancellors (Research and Internationalisation; Institutional Change, Strategic Partnerships and Societal Impact), the Directorate for Institutional Advancement, and the Faculties of Law (Centre for Human Rights) and The Humanities, with a cocktail reception to follow.

The overarching question guiding the event is a thought-provoking one: Even though apartheid has formally ended, to what extent does its legacy persist? This enquiry sets the stage for an exploration of diverse facets of this legacy by three distinguished authors – Premesh Lalu, Wahbie Long, and Saleem Badat. Their recently published works, namely Undoing Apartheid (Polity Press, 2022), Nation on the Couch: Inside South Africa’s Mind (MF Books, 2021), and Tennis, Apartheid and Social Justice: The First Non-Racial International Tennis Tour, 1971 (UKZN Press, 2023), respectively offer textured insights into the enduring shadows cast by apartheid on contemporary realities.

These authors will engage in a conversation with Sarah Nuttall, Professor of Literary and Cultural Studies at Wits and the former Director of the Wits Institute for Social and Economic Research (WISER), who served in that capacity from 2012 to 2022.


Date: 12 October 2023

Time: 16:30-18:30

Venue: Albert Wessels Auditorium, UFS Bloemfontein Campus

For those interested in attending, RSVP by 6 October 2023 through the event registration. For further information, contact Alicia Pienaar at pienaaran1@ufs.ac.za.

The Speakers

The speakers include Premesh Lalu, Research Professor and former founding director of the Centre for Humanities Research (CHR) at the University of the Western Cape (UWC); Wahbie Long, Professor in the Department of Psychology and Deputy Dean in the Faculty of Humanities at the University of Cape Town (UCT); and Saleem Badat, Research Professor in the Department of History at the UFS, former Programme Director of International Higher Education and Strategic Projects at the Andrew Mellon Foundation in New York, and former Vice-Chancellor of Rhodes University.

As South Africa grapples with the lingering impact of its apartheid history, this event promises an insightful exploration of the continuing reverberations of this historical trauma, inviting participants to reflect on the ways in which it continues to shape the present.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept