Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2023 | Story Jóhann Thormählen | Photo Stephen Collett
Prof Francis Petersen, Vice-Chancellor and Principal of the University of the Free State, and Jacques Nienaber, Springbok head coach, met when South Africa played against Wales in Bloemfontein in 2022.

The University of the Free State (UFS) will be well represented on the biggest stage when the 2023 Rugby World Cup takes place in the next two months. UFS alumni count among those on the field, next to the field, and even as part of the officials in France.

The former Shimla Ox Nche represents South Africa at his first World Cup, while the former Kovsies Jacques Nienaber (head coach), Rassie Erasmus (South Africa’s Director of Rugby), Daan Human (scrum coach), and Bongani Tim Qumbu (strength and conditioning coach) are all part of the Springbok team management.

They all called Shimla Park – the home of UFS rugby – home when they started their careers.

Another UFS alumnus, Jaco Peyper, will represent South Africa as one of 12 referees at the World Cup. Peyper, regarded as one of the world’s best referees, will referee his second World Cup opening match when he takes charge of the first game between France and New Zealand (8 September 2023).

Message of support

In a letter to Nienaber, Prof Francis Petersen, UFS Vice-Chancellor and Principal, sent the university’s s support to the Springboks and wished them all the best for the tournament on behalf of the staff and students at the university. 

 “We are extremely proud of the Springboks – especially with you at the helm of the team. As a Kovsie alumnus, we are truly proud of what you have achieved during your career in South African rugby. We are also proud of Rassie, Ox, Daan, Bongani, and Jaco,” Prof Petersen wrote. 

“I wish you and the team all the best in the tournament – I know that Sunday’s opening match will be played with vigour and determination. Like the rest of the country, we as Kovsies are behind you all the way!”

Making a difference

The 2023 World Cup starts on 8 September 2023, with the final on 28 October 2023. 

The Springboks are in Pool B with Scotland, Ireland, Tonga, and Romania. Their first game is against Scotland in Marseille on 10 September 2023, with Nche as replacement prop.

Jaco Swanepoel, Head of Rugby at KovsieSport, says the UFS is very proud of the former Kovsies representing their country.

“For us, it is exceptional to watch the Springboks play and know that there are so many guys involved,” he says.

“It is also our goal as a university to send people into society to be involved on a bigger stage and to make a difference. In this case, a big difference in sport. It is very special for us.”

Nienaber studied physiotherapy, was the Shimlas’ physio while studying, and later progressed to coach.

He took over the Springbok reigns from Erasmus in January 2020.

Erasmus – who steered South Africa to victory as coach in the 2019 World Cup – and Human both represented the Shimlas and Springboks.

Qumbu studied Human Movement Science and worked with the UFS Young Guns team while Nche was playing for the side.

From UFS Young Guns to Boks

Nche was part of the Shimlas that won the 2015 Varsity Cup and the UFS Young Guns that were crowned champions in 2014. He was named KovsieSport Junior Sportsman of the Year in 2015.

André Tredoux, the Shimlas’ head coach, scouted Nche as a promising youngster from HTS Louis Botha and coached him with the Free State U19 team, UFS Young Guns, and Shimlas.

“Ox has always been an unbelievable character and great person,” Tredoux says.

“What I noticed from a young age was his explosiveness and speed, but his work ethic is what set him apart from others.

“We are very proud of him and all the former Kovsies who are part of the Springbok management. We know they will make us proud.”

    News Archive

    Studies to reveal correlation between terrain, energy use, and giraffe locomotion
    2016-11-18



    More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

    According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

    Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

    Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

    Wild giraffe population decrease by 40% in past decade

    “Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

    “Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

    Locomotion study brings strategy for specialist foot care

    On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

    This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

    Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

    Studying giraffes in smaller versus larger spaces

    The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

    However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

    A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

    Drones open up unique opportunities for studying giraffes

    The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

    “Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

    “The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


    Related articles:

    23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
    9 March 2016:Giraffe research broadcast on National Geographic channel
    18 Sept 2015 Researchers reach out across continents in giraffe research
    29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

     

    We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

    Accept