Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 September 2023 | Story University of the Free State | Photo Supplied
Staff from UFS University Estates: Engineering Services; Obakeng Mocwana, Ben Mhlomi, Sibusiso Lediga, Waylon Kruger, Alain Isaacs, and Nicolaas Esterhuysen.

Last year, the University of the Free State (UFS) launched a progressive institutional strategy, which contains bold but achievable goals to maximise its impact on society. Vision 130 expresses the institution’s intent and commitment to be acknowledged by peers and society as a top-tier university in South Africa, ranked among the best in the world. It highlights key focus areas for the period leading up to 2034 when the university celebrates 130 years of existence. A set of key values have been identified to guide UFS strategies and operations – with sustainability occupying a central space.

As an institution of teaching and learning, research, and engagement, the UFS wants to use its strategic position to drive sustainability issues by establishing green campuses and adopting sustainable built environment practices.

It aims to renew, rejuvenate, regenerate, and revisit facilities and infrastructure. This includes a commitment to implementing energy-saving and effective water management initiatives for greater sustainability.

Solar energy

A flagship renewable energy project is the installation of solar plants across the three UFS campuses in response to the call for urgent solutions to load-shedding problems, and promoting sustainable, clean energy solutions.

The microgrid installation on the Qwaqwa Campus in the Eastern Free State is one of the biggest solar-diesel hybrid systems in South Africa, enabling this campus to keep running despite excessive power interruptions in the region.

The installed grid-tied solar plants operate without batteries on all three campuses, giving the university an optimal configuration between capital cost and payback period.
The UFS has saved up to R32,5 million since the first solar plant was commissioned in 2017. This will soon increase substantially with the commissioning of two large new ground-mounted solar plants on the Bloemfontein Campus.

Waterwise landscaping

Changing environmental conditions are putting precious water resources under strain across the world – especially in drought-prone sub-Saharan Africa.  

The UFS has been implementing innovative waterwise and greywater initiatives over the past couple of years in response to continuous local drought conditions and sporadic water restrictions, replacing large expanses of lawn with hard elements and paving, as well as waterwise indigenous plants, including a range of hardy succulents. 

Rainwater harvesting systems have been fitted at all residences and academic buildings. Other water-saving initiatives include greywater systems installed at residences, waterless urinals in administrative and academic buildings, water restrainers, pressure control systems (reducing the volume of water) and push-button systems instead of taps.  

Encouraging energy-saving results

A clear indication that the energy-saving measures are yielding positive results is that energy consumption has decreased with 14,5% since 2017, even though the gross surface area of the university has grown with 8,8%.

UFS carbon emissions have shown a significant reduction over the years – from 0.115 CO2/m2 in 2013 to 0.088 CO2/m2 in 2022 – making it a frontrunner in low carbon emissions among South African higher education institutions.  This is mainly due to the implementation of energy-efficient strategies and solar generation, effectively minimising energy consumption. 

The UFS not only prioritises sustainability as a fundamental institutional focus, but also actively engages in numerous projects that contribute to a more sustainable world, aligned with the United Nations Sustainable Development Goals. In this way, it lives up to its mission to be a research-led, student-centred, and regionally engaged institution that contributes to development and social justice through the production of globally competitive graduates and knowledge. 

Energy-efficient buildings

The UFS has thorough guidelines for pursuing sustainability in its built environment, with factors such as energy efficiency given meticulous consideration when new buildings and structures are planned. The university also measures and tracks energy consumption in all its existing buildings.

On the Bloemfontein Campus, the multi-functional Modular Lecture Building offers flexible teaching and learning spaces, where large numbers of students exchange knowledge and information in an environment enhanced and supported by electronic media. This facility is considered a hub for innovative learning, recently receiving a National Merit Award from the South African Institute of Architects (SAIA). Adjudicators noted that the building sets a benchmark for rational planning and technical efficiency and helps to complete the campus urban framework through its placing and material choices.

The building incorporated various energy-saving measures in its design, including building orientation to optimise exposure to sunlight in spaces where it matters, seasonal sun control, double glazing and louvres for energy conservation, rainwater harvesting and storage on the roof of the building, trees and waterwise landscaping.

This facility forms part of an endeavour to create a cohesive campus identity that improves the university’s core business, and exemplifies its emphasis on innovation and excellence.

The UFS has adopted technical guidelines for building design and development, following the rating systems and tools developed by the Green Building Council of South Africa (GBCSA), which are used for the certification of sustainability performance in the built environment. These guidelines, which apply to indoor environmental quality, energy, materials, land use ecology, emissions, innovation, and water, among others, form part of the measures used when new buildings are developed.
 
Research on water and water quality 

In line with the United Nations’ Sustainable Development Goal 6 (Clean Water and Sanitation), several UFS researchers are involved with important research efforts on water and water quality, including:

• Centre for Environmental Management: The use of freshwater algae to treat acid mine drainage or domestic wastewater.
This research, which has earned a coveted NSTF-South32 award, focuses on a more circular use of resources where waste is reduced and resources are recycled, which has driven a paradigm shift within the scientific community about wastewater solutions.

• Centre for Mineral Biogeochemistry: Developing sustainable water treatment options using biogeochemical processes in engineered technology.
The UFS has established a Mineral Biogeochemistry Research Infrastructure Platform as part of a national initiative to promote the science of biogeochemistry as a strategic objective in South Africa. It also focuses on agricultural bio-augmentation research with industry partners to help ensure long-term food security in Africa.

• Institute for Groundwater Studies (IGS): Research on fractured rock aquifers, industrial and mining contamination, groundwater governance and groundwater resource. 

The IGS water research laboratory has ISO 17025 accreditation from the South African National Accreditation System (SANAS) for all its methods, setting it apart in the field of contract research on water-related topics in the mining and industrial sectors.


 

 

WATCH: UFS' Sustainable Energy Initiatives



News Archive

Space-based information plays vital role in disaster-risk reduction
2017-02-28

Africa is one of the continents most affected by disasters triggered by natural hazards. The result of climate change is a reality that affects every human being, whether it is extreme heat waves, cyclones, or the devastation of drought and floods. Climate change can provoke injuries or fatalities and affects the livelihoods of people in both rural communities and urban areas. It triggers damage and losses in various sectors of development, such as housing, road infrastructure, agriculture, health, education, telecommunications, energy, and affects routine economic processes leading to economic losses.

According to Dr Dumitru Dorin Prunariu, President of the Association of Space Explorers Europe, space programmes have become an important force defining challenges of the 21st century. “Space observation is essential for climate-change monitoring,” he said.

Dr Prunariu was the keynote speaker at a two-day symposium on climate resilience and water that was hosted by the Disaster Management Training and Education Centre for Africa (DiMTEC), at the University of the Free State (UFS). He participated in the Soviet Union’s Intercosmos programme and completed an eight day-mission on board Soyuz 40 and the Salyut 6 space laboratory, where he and fellow cosmonaut Leonid Popov completed scientific experiments in the fields of astrophysics, space radiation, space technology, space medicine, and biology. He is the 103rd human being to have travelled to outer space.

The focus of Dr Prunariu’s lecture was: Space activities in support of climate change mitigation and climate resilience.

Description: Dr Dumitriu Dorin Prunariu Tags: Dr Dumitriu Dorin Prunariu

Dr Dumitru Dorin Prunariu, the 103rd human
being in outer space and President of
the Association of Space Explorers Europe.
Photo: Charl Devenish

Space-based information, an extra eye that can detect a way out during disasters
“For governments to support communities affected by any disaster, precise and up-to-date information on its impacts is essential as a way to respond in a timely and effective way,” said Dr Prunariu.

Space-based information (derived using Earth observation, global navigation satellite systems, and satellite communications) can play a vital role in supporting disaster-risk reduction, response, and recovery efforts, by providing accurate and timely information to decision-makers.

“With space-based information, disaster management teams will be able to take note of recently established roads that may not appear in typical maps produced by National Geographic Institutes, but which could be used as emergency evacuation routes or as roads to deliver humanitarian assistance to those who require it in remote areas."

Space-based tools help decision-makers to improve planning
“Space-based tools and spatial data infrastructure is also crucial for policy planners and decision-makers in increasing the resilience of human settlements. Using geographic data and information collected before the occurrence of major disasters in combination with post-disaster data could yield important ideas for improved urban planning, especially in disaster-prone areas and highly-populated regions.

“In the recovery process, information on impact is used by governments to provide assistance to those affected, to plan the reconstruction process, and to restore the livelihoods of those affected,” said Dr Prunariu.

“Space observation is
essential for climate-
change monitoring.”

The symposium was attended by representatives from Liberia, Nigeria, Kenya, Ghana, Namibia, and Zimbabwe, with various international scientists from Europe imparting their expert knowledge on water and global resilience. The presence of these international experts strengthened global networks.

It isn't important in which sea or lake you observe a slick of pollution, or in the forests of which country a fire breaks out, or on which continent a hurricane arises, you are standing guard over the whole of our Earth. - Yuri Artyukhin: Soviet Russian cosmonaut and engineer who made a single flight into space.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept