Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2023 | Story Leonie Bolleurs | Photo Supplied
Prof Lesley Green
Prof Lesley Green was announced the winner of the 2023 ASSAf Humanities Book Award in the category ‘Established Researcher’. She delivered a lecture on her book: Rock. Water. Life: Ecology and Humanities for a Decolonial South Africa.

A group of more than 100 academics and students from universities across South Africa and abroad attended the virtual lecture by Prof Lesley Green, winner of the 2023 ASSAf Humanities Book Award in the category ‘Established Researcher’, who discussed her cross-cutting book, titled: Rock. Water. Life: Ecology and Humanities for a Decolonial South Africa. 

The lecture is part of a series focused on the Humanities Book Awards, offering award recipients a platform to discuss the motivation behind their books, the societal impact of their work, and the personal influences that shaped their text. Prof Reddy said that academics and students can anticipate a series of humanities book award lectures in the coming months. 

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the University of the Free State (UFS), member of the Academy of Science of South Africa (ASSAf), and member of the Book Award adjudication panel, facilitated the recent (29 August 2023) online 2023 ASSAf Humanities Book Award Lecture. 

Prof Green, Professor of Anthropology and the Director of Environmental Humanities South (EHS) at the University of Cape Town, was announced the winner of the 2023 ASSAf Humanities Book Award in the category ‘Established Researcher’, for which ASSAf received 31 nominations. She received the award at the end of March this year during a ceremony at the Vineyard Hotel in Cape Town.

The first ASSAf Book Prize was awarded in 2017, and since then ASSAf has conferred the award on an individual every two years to recognise and celebrate the significance and impact of well-written scholarly writings on human knowledge and intellectual efforts in South Africa. 

Prof Reddy characterised Prof Green's specific work as an outstanding book that makes a formidable contribution to the field.

Justice-based environmental sciences 

Prof Green’s research centres on justice-based environmental sciences in South Africa, with a particular focus on the relationship between knowledge and democracy in the Global South – a central theme in her award-winning text.

In the three parts of her book, ‘Past Present’, ‘Present Futures’, and ‘Futures Imperfect’, Prof Green explores the interwoven nature of the past, present, and future. Within these three parts, she delves into the fascinating array of identity markers, inequality, racism, colonialism, and environmental destruction in South Africa. 

Prof Reddy noted that the text asserts a need for environmental research and governance to evolve, contributing to addressing South Africa’s deep history of racial oppression and environmental exploitation. “The book also offers an in-depth engagement of environmental conflict, shedding light on matters often overshadowed by daily concerns in contemporary South Africa,” he added. 

The book, linking the humanities and social sciences with the natural sciences and applied sciences, touched on an array of important topics, including the history of contested water access in Cape Town, struggles over fracking in the Karoo, the call for the decolonisation of science (#ScienceMustFall), land restitution versus the politics of soil, contests over baboon management, and the consequences of sending sewage to urban oceans. 

Prof Green has observed the landscape of environmentalism for a couple of years and noticed a series of struggles. “Typically, these conflicts were being presented in highly polemic ways, often showcasing tremendous tension between academic environmentalism and activists on the ground. I noticed recurring patterns – what was being presented as the preferred form of environmentalism was not something I could support. For example, the frack-free Karoo campaign. It left me quite uncomfortable due to the erasure of Khoi and San presence in the Karoo,” she added. 

“So, what kind of environmentalism could I get behind? Questions around a just environmental governance begin to arise for me.”

Property, #ScienceMustFall, and black environmentalism 

During the discussion, Prof Green shared particular images from each section of her book that caused her to pause and reconsider her stance on the type of environmentalism she could support.

“We inherited a way of thinking about the world that was separated from nature and society. We have challenged that division of nature and society in respect of race and racism and sex and sexism, but we have not brought that critique to bear on how we relate to the world. Somehow, under neo-liberal governance, we find ourselves in this space where economics and finance are seen as the hero that will bring it all together. 

These comments merely scratched the surface of Prof Green’s insights into her book – which Prof John Higgins, Emeritus Professor who formerly held the Arderne Chair in Literature at the University of Cape Town (now Senior Research Scholar at UCT), referred to in his closing remarks as a rich description of a magnificent book. According to him, this scholarly book not only circulates and makes knowledge public, but also provides an opportunity to question that very knowledge. 

This marked the first instance where ASSAf combined book selection with a discussion on the chosen book, underscoring the value of scholarly literature.

- In the Emerging Researcher category, Dr Rick de Villiers from the UFS Department of English was a shortlisted candidate for his book, titled: Eliot and Beckett’s Low Modernism: Humility and Humiliation. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept