Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2023 | Story Leonie Bolleurs | Photo Supplied
Prof Lesley Green
Prof Lesley Green was announced the winner of the 2023 ASSAf Humanities Book Award in the category ‘Established Researcher’. She delivered a lecture on her book: Rock. Water. Life: Ecology and Humanities for a Decolonial South Africa.

A group of more than 100 academics and students from universities across South Africa and abroad attended the virtual lecture by Prof Lesley Green, winner of the 2023 ASSAf Humanities Book Award in the category ‘Established Researcher’, who discussed her cross-cutting book, titled: Rock. Water. Life: Ecology and Humanities for a Decolonial South Africa. 

The lecture is part of a series focused on the Humanities Book Awards, offering award recipients a platform to discuss the motivation behind their books, the societal impact of their work, and the personal influences that shaped their text. Prof Reddy said that academics and students can anticipate a series of humanities book award lectures in the coming months. 

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the University of the Free State (UFS), member of the Academy of Science of South Africa (ASSAf), and member of the Book Award adjudication panel, facilitated the recent (29 August 2023) online 2023 ASSAf Humanities Book Award Lecture. 

Prof Green, Professor of Anthropology and the Director of Environmental Humanities South (EHS) at the University of Cape Town, was announced the winner of the 2023 ASSAf Humanities Book Award in the category ‘Established Researcher’, for which ASSAf received 31 nominations. She received the award at the end of March this year during a ceremony at the Vineyard Hotel in Cape Town.

The first ASSAf Book Prize was awarded in 2017, and since then ASSAf has conferred the award on an individual every two years to recognise and celebrate the significance and impact of well-written scholarly writings on human knowledge and intellectual efforts in South Africa. 

Prof Reddy characterised Prof Green's specific work as an outstanding book that makes a formidable contribution to the field.

Justice-based environmental sciences 

Prof Green’s research centres on justice-based environmental sciences in South Africa, with a particular focus on the relationship between knowledge and democracy in the Global South – a central theme in her award-winning text.

In the three parts of her book, ‘Past Present’, ‘Present Futures’, and ‘Futures Imperfect’, Prof Green explores the interwoven nature of the past, present, and future. Within these three parts, she delves into the fascinating array of identity markers, inequality, racism, colonialism, and environmental destruction in South Africa. 

Prof Reddy noted that the text asserts a need for environmental research and governance to evolve, contributing to addressing South Africa’s deep history of racial oppression and environmental exploitation. “The book also offers an in-depth engagement of environmental conflict, shedding light on matters often overshadowed by daily concerns in contemporary South Africa,” he added. 

The book, linking the humanities and social sciences with the natural sciences and applied sciences, touched on an array of important topics, including the history of contested water access in Cape Town, struggles over fracking in the Karoo, the call for the decolonisation of science (#ScienceMustFall), land restitution versus the politics of soil, contests over baboon management, and the consequences of sending sewage to urban oceans. 

Prof Green has observed the landscape of environmentalism for a couple of years and noticed a series of struggles. “Typically, these conflicts were being presented in highly polemic ways, often showcasing tremendous tension between academic environmentalism and activists on the ground. I noticed recurring patterns – what was being presented as the preferred form of environmentalism was not something I could support. For example, the frack-free Karoo campaign. It left me quite uncomfortable due to the erasure of Khoi and San presence in the Karoo,” she added. 

“So, what kind of environmentalism could I get behind? Questions around a just environmental governance begin to arise for me.”

Property, #ScienceMustFall, and black environmentalism 

During the discussion, Prof Green shared particular images from each section of her book that caused her to pause and reconsider her stance on the type of environmentalism she could support.

“We inherited a way of thinking about the world that was separated from nature and society. We have challenged that division of nature and society in respect of race and racism and sex and sexism, but we have not brought that critique to bear on how we relate to the world. Somehow, under neo-liberal governance, we find ourselves in this space where economics and finance are seen as the hero that will bring it all together. 

These comments merely scratched the surface of Prof Green’s insights into her book – which Prof John Higgins, Emeritus Professor who formerly held the Arderne Chair in Literature at the University of Cape Town (now Senior Research Scholar at UCT), referred to in his closing remarks as a rich description of a magnificent book. According to him, this scholarly book not only circulates and makes knowledge public, but also provides an opportunity to question that very knowledge. 

This marked the first instance where ASSAf combined book selection with a discussion on the chosen book, underscoring the value of scholarly literature.

- In the Emerging Researcher category, Dr Rick de Villiers from the UFS Department of English was a shortlisted candidate for his book, titled: Eliot and Beckett’s Low Modernism: Humility and Humiliation. 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept