Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 April 2024 | Story André Damons | Photo Stephen Collett
Prof Salim Karim
Prof Francis Petersen, Vice-Chancellor and Principal of the University of the Free State (left) and Prof Gert Van Zyl, Faculty of Health Sciences Dean (right) conferred Prof Salim S Abdool Karim honorary doctorate for his ground-breaking research in AIDS and COVID-19. He received the degree PhD in Medical Virology (h.c.) during the Faculty of Health Sciences graduation ceremony.

With the case study of Caprise 256, a young woman in his AIDS study, and her potent antibody that kills HIV, Prof Salim S Abdool Karim, honorary doctorate recipient, conveyed the message of the power of science, knowledge and discovery to motivate the graduates from the Faculties of Health Sciences and Theology and Religion at the University of the Free State (UFS).

Prof Karim, renowned for his ground-breaking research in AIDS and COVID-19, received the degree PhD in Medical Virology (h.c.) during Thursday’s (18 April 2024) graduation ceremony.

From humble beginnings

“It is great honour and privilege to be here and accept this honorary doctorate. I first went to university in 1978 and wanted to study engineering but did not have the money to pay for registration as I come from a poor background. So, I attended classes anywhere. But then I was accepted to study medicine at the University of Natal with a full scholarship and that was the end of my career in engineering.

“From that humble beginning to today where you might have watched me on TV trying to share with you what we know about COVID-19 and other infectious diseases, is a great culmination of a career and I am deeply honoured and privileged to receive this honorary doctorate”, he said shortly after accepting his fifth honorary degree.

Prof Abdool Karim, a clinical infectious disease epidemiologist who is widely recognised for scientific contributions to AIDS and COVID-19, also shared with graduates the last 20 years of his academic journey with an example to illustrate how exciting the acquisition of knowledge and thrill of discovery can be. He talked about his work with AIDS and says it remains one of the world’s greatest challenges. Last year, he said, there were 1.3 million new infections and over 700 000 deaths as a result of AIDS.

Caprisa 256’s antibody

“I have devoted almost 40 years of research to looking for solutions for the AIDS problem and one of the biggest problems we are dealing with is the high rate of HIV, particularly in young girls. In 2003 we started a study to begin to understand why young women are at such a high risk of HIV.

“We enrolled hundreds of young women without HIV. We provided them with all kinds of knowledge to try and keep them HIV-free. Amongst those women we enrolled was participant 256, a young lady and she acquired HIV infection two years later in 2005.”

It would later turn out that this young woman, codename Caprisa 256, has a very special antibody – the kind that can kill a wide range of HIV – which is referred to as a broadly neutralising antibody. It is an antibody researchers tried to ellicit in making vaccine.

It turned out that not only is her antibody able to kill a wide range of HIV, it is a highly potent antibody. After testing and cloning a cell in the blood and growing it in a culture and harvesting the antibody, it was genetically manipulated to get a better antibody.

The Director of the Centre for the AIDS Programme of Research in South Africa (Caprisa), explained that it took two-and-a-half years to manufacture this antibody in the US and the first South African was injected with it in 2020. They enrolled over 1 000 women in a study with half of the women receiving the placebo and half the antibody. The question whether it works, or protects humans from the HIV will only be answered next year, Prof Abdool Karim explained. 

The 3 Ps

“What I am trying to convey to you, it’s the power of science, the power of knowledge, the power of discovery and when each of you goes out into the world, I want to leave you with the message that there are three valuable lessons that I have learned in this 20-year journey of Caprisa 256.

“The first one is find your passion, find something that excites you when you wake up in the morning. There will be people that would want to pull you down, you will have to stand firm. You have to show that you are passionate and committed and regardless of the obstacles, you will persevere. Find your passion and persevere. And as you do that, always remember the pursuit of excellence. I know that each of you will bring to this world your own humanity, your own values, and we are in this world, in a situation where we are in desperate need of people who will bring their humanity and their wisdom to bear.”

Prof Francis Petersen, Vice-Chancellor and Principal of the UFS, congratulated Prof Abdool Karim on his honorary degree and praised his groundbreaking research on Aids and COVID-19, as well as his exceptional work in medical virology over the years. “Prof Abdool Karim led the South African response to COVID-19, providing us as the public, as well as the government with scientific advice on the virus, new variants, and flattening the curve. Prof Abdool Karim has the ability to easily explain complex science to members of the general public in such a way that they are able to understand it. He played a critical role during the pandemic, and for this as well as for his research on Aids, South Africa is indebted to him.

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept