Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 April 2024 | Story André Damons | Photo Stephen Collett
Prof Salim Karim
Prof Francis Petersen, Vice-Chancellor and Principal of the University of the Free State (left) and Prof Gert Van Zyl, Faculty of Health Sciences Dean (right) conferred Prof Salim S Abdool Karim honorary doctorate for his ground-breaking research in AIDS and COVID-19. He received the degree PhD in Medical Virology (h.c.) during the Faculty of Health Sciences graduation ceremony.

With the case study of Caprise 256, a young woman in his AIDS study, and her potent antibody that kills HIV, Prof Salim S Abdool Karim, honorary doctorate recipient, conveyed the message of the power of science, knowledge and discovery to motivate the graduates from the Faculties of Health Sciences and Theology and Religion at the University of the Free State (UFS).

Prof Karim, renowned for his ground-breaking research in AIDS and COVID-19, received the degree PhD in Medical Virology (h.c.) during Thursday’s (18 April 2024) graduation ceremony.

From humble beginnings

“It is great honour and privilege to be here and accept this honorary doctorate. I first went to university in 1978 and wanted to study engineering but did not have the money to pay for registration as I come from a poor background. So, I attended classes anywhere. But then I was accepted to study medicine at the University of Natal with a full scholarship and that was the end of my career in engineering.

“From that humble beginning to today where you might have watched me on TV trying to share with you what we know about COVID-19 and other infectious diseases, is a great culmination of a career and I am deeply honoured and privileged to receive this honorary doctorate”, he said shortly after accepting his fifth honorary degree.

Prof Abdool Karim, a clinical infectious disease epidemiologist who is widely recognised for scientific contributions to AIDS and COVID-19, also shared with graduates the last 20 years of his academic journey with an example to illustrate how exciting the acquisition of knowledge and thrill of discovery can be. He talked about his work with AIDS and says it remains one of the world’s greatest challenges. Last year, he said, there were 1.3 million new infections and over 700 000 deaths as a result of AIDS.

Caprisa 256’s antibody

“I have devoted almost 40 years of research to looking for solutions for the AIDS problem and one of the biggest problems we are dealing with is the high rate of HIV, particularly in young girls. In 2003 we started a study to begin to understand why young women are at such a high risk of HIV.

“We enrolled hundreds of young women without HIV. We provided them with all kinds of knowledge to try and keep them HIV-free. Amongst those women we enrolled was participant 256, a young lady and she acquired HIV infection two years later in 2005.”

It would later turn out that this young woman, codename Caprisa 256, has a very special antibody – the kind that can kill a wide range of HIV – which is referred to as a broadly neutralising antibody. It is an antibody researchers tried to ellicit in making vaccine.

It turned out that not only is her antibody able to kill a wide range of HIV, it is a highly potent antibody. After testing and cloning a cell in the blood and growing it in a culture and harvesting the antibody, it was genetically manipulated to get a better antibody.

The Director of the Centre for the AIDS Programme of Research in South Africa (Caprisa), explained that it took two-and-a-half years to manufacture this antibody in the US and the first South African was injected with it in 2020. They enrolled over 1 000 women in a study with half of the women receiving the placebo and half the antibody. The question whether it works, or protects humans from the HIV will only be answered next year, Prof Abdool Karim explained. 

The 3 Ps

“What I am trying to convey to you, it’s the power of science, the power of knowledge, the power of discovery and when each of you goes out into the world, I want to leave you with the message that there are three valuable lessons that I have learned in this 20-year journey of Caprisa 256.

“The first one is find your passion, find something that excites you when you wake up in the morning. There will be people that would want to pull you down, you will have to stand firm. You have to show that you are passionate and committed and regardless of the obstacles, you will persevere. Find your passion and persevere. And as you do that, always remember the pursuit of excellence. I know that each of you will bring to this world your own humanity, your own values, and we are in this world, in a situation where we are in desperate need of people who will bring their humanity and their wisdom to bear.”

Prof Francis Petersen, Vice-Chancellor and Principal of the UFS, congratulated Prof Abdool Karim on his honorary degree and praised his groundbreaking research on Aids and COVID-19, as well as his exceptional work in medical virology over the years. “Prof Abdool Karim led the South African response to COVID-19, providing us as the public, as well as the government with scientific advice on the virus, new variants, and flattening the curve. Prof Abdool Karim has the ability to easily explain complex science to members of the general public in such a way that they are able to understand it. He played a critical role during the pandemic, and for this as well as for his research on Aids, South Africa is indebted to him.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept