Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 April 2024 | Story André Damons | Photo Stephen Collett
Prof Salim Karim
Prof Francis Petersen, Vice-Chancellor and Principal of the University of the Free State (left) and Prof Gert Van Zyl, Faculty of Health Sciences Dean (right) conferred Prof Salim S Abdool Karim honorary doctorate for his ground-breaking research in AIDS and COVID-19. He received the degree PhD in Medical Virology (h.c.) during the Faculty of Health Sciences graduation ceremony.

With the case study of Caprise 256, a young woman in his AIDS study, and her potent antibody that kills HIV, Prof Salim S Abdool Karim, honorary doctorate recipient, conveyed the message of the power of science, knowledge and discovery to motivate the graduates from the Faculties of Health Sciences and Theology and Religion at the University of the Free State (UFS).

Prof Karim, renowned for his ground-breaking research in AIDS and COVID-19, received the degree PhD in Medical Virology (h.c.) during Thursday’s (18 April 2024) graduation ceremony.

From humble beginnings

“It is great honour and privilege to be here and accept this honorary doctorate. I first went to university in 1978 and wanted to study engineering but did not have the money to pay for registration as I come from a poor background. So, I attended classes anywhere. But then I was accepted to study medicine at the University of Natal with a full scholarship and that was the end of my career in engineering.

“From that humble beginning to today where you might have watched me on TV trying to share with you what we know about COVID-19 and other infectious diseases, is a great culmination of a career and I am deeply honoured and privileged to receive this honorary doctorate”, he said shortly after accepting his fifth honorary degree.

Prof Abdool Karim, a clinical infectious disease epidemiologist who is widely recognised for scientific contributions to AIDS and COVID-19, also shared with graduates the last 20 years of his academic journey with an example to illustrate how exciting the acquisition of knowledge and thrill of discovery can be. He talked about his work with AIDS and says it remains one of the world’s greatest challenges. Last year, he said, there were 1.3 million new infections and over 700 000 deaths as a result of AIDS.

Caprisa 256’s antibody

“I have devoted almost 40 years of research to looking for solutions for the AIDS problem and one of the biggest problems we are dealing with is the high rate of HIV, particularly in young girls. In 2003 we started a study to begin to understand why young women are at such a high risk of HIV.

“We enrolled hundreds of young women without HIV. We provided them with all kinds of knowledge to try and keep them HIV-free. Amongst those women we enrolled was participant 256, a young lady and she acquired HIV infection two years later in 2005.”

It would later turn out that this young woman, codename Caprisa 256, has a very special antibody – the kind that can kill a wide range of HIV – which is referred to as a broadly neutralising antibody. It is an antibody researchers tried to ellicit in making vaccine.

It turned out that not only is her antibody able to kill a wide range of HIV, it is a highly potent antibody. After testing and cloning a cell in the blood and growing it in a culture and harvesting the antibody, it was genetically manipulated to get a better antibody.

The Director of the Centre for the AIDS Programme of Research in South Africa (Caprisa), explained that it took two-and-a-half years to manufacture this antibody in the US and the first South African was injected with it in 2020. They enrolled over 1 000 women in a study with half of the women receiving the placebo and half the antibody. The question whether it works, or protects humans from the HIV will only be answered next year, Prof Abdool Karim explained. 

The 3 Ps

“What I am trying to convey to you, it’s the power of science, the power of knowledge, the power of discovery and when each of you goes out into the world, I want to leave you with the message that there are three valuable lessons that I have learned in this 20-year journey of Caprisa 256.

“The first one is find your passion, find something that excites you when you wake up in the morning. There will be people that would want to pull you down, you will have to stand firm. You have to show that you are passionate and committed and regardless of the obstacles, you will persevere. Find your passion and persevere. And as you do that, always remember the pursuit of excellence. I know that each of you will bring to this world your own humanity, your own values, and we are in this world, in a situation where we are in desperate need of people who will bring their humanity and their wisdom to bear.”

Prof Francis Petersen, Vice-Chancellor and Principal of the UFS, congratulated Prof Abdool Karim on his honorary degree and praised his groundbreaking research on Aids and COVID-19, as well as his exceptional work in medical virology over the years. “Prof Abdool Karim led the South African response to COVID-19, providing us as the public, as well as the government with scientific advice on the virus, new variants, and flattening the curve. Prof Abdool Karim has the ability to easily explain complex science to members of the general public in such a way that they are able to understand it. He played a critical role during the pandemic, and for this as well as for his research on Aids, South Africa is indebted to him.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept