Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2024 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Frank Zachos
Prof Frank Zachos recently delivered his inaugural lecture on the UFS Bloemfontein Campus.

Prof Frank Zachos, a scientist and Head of the Mammal Collection at the Natural History Museum (NHM) in Vienna – one of the world’s largest natural history museums – recently delivered his inaugural lecture at the University of the Free State (UFS) on the Bloemfontein Campus.

His lecture was titled: Of bat bombs and super moms – the wondrous and wondrously curious world of mammals.

Prof Zachos, an affiliated researcher at the UFS, says he chose mammals as the topic of his lecture because he is a mammalogist and curator of mammals at the Natural History Museum. Additionally, he collaborates with Prof Paul Grobler, Head of the Department of Genetics, on mammal projects.

Exposure to almost unparalleled biodiversity in SA

With a mixture of entertaining fun facts and some proper research results, he presented his lecture, providing an overview of some of the most interesting aspects of mammals. These included their different ways of reproduction: the platypuses laying eggs, the tiny marsupial offspring growing in a pouch, and placental mammals having long gestation times. Furthermore, he compared levels of biodiversity in South Africa and Europe and highlighted some particularly bizarre mammals, such as the aye-aye, naked mole-rat, the platypus, and two extinct South African ungulates from their collection in Vienna – the quagga and the blue antelope.

Prof Zachos also discussed his own research on blue antelope genetics, as well as research on other species, in the context of the detrimental impact humans have on mammals and other wildlife.

Moreover, his lecture included a reference to Project X-Ray, a story of how the US army pursued an unsuccessful plan to use bats as carriers of mini bombs in World War II.

Prof Zachos, who is specifically known for his research on the systematics, biogeography, and genetics of red deer, as well as his theoretical work on the species problem (‘what is a species?’ –  one of the most hotly debated topics in evolutionary biology), is affiliated with the UFS due to his longstanding collaboration with Prof Grobler. He says they have known each other for a long time, have published together, and that he has also served as an external reviewer for several theses coming from the Department of Genetics.

“Apart from this personal connection, what made this collaboration particularly interesting to me from a professional viewpoint, is the rich wildlife biodiversity and the research focus of Prof Grobler’s research group, which overlaps significantly with my own longstanding interests,” adds Prof Zachos.

“Working with Prof Grobler, I am involved in studies on the genetic diversity and structuring of different mammal species occurring in South Africa. The opportunity to spend time in the field for sample collection and other activities is definitely also a highlight,” remarks Prof Zachos.

Ideal combination of academic and personal growth

Regarding his connection with the UFS and its impact on shaping the future direction of his research, he states that he has a strong interest in antelopes – a group of mammals not found in Europe, but very prominent in South Africa. “Apart from that, people in the Department of Genetics have expertise in relevant areas that I personally do not have, for example bioinformatics. For me, it is the ideal combination of academic and personal growth, and I am very grateful to have this unique opportunity.”

He believes that his affiliation with the UFS and its Department of Genetics will continue to provide him with opportunities to expand his research and knowledge to different species and ecosystems.

Beyond science, he says that he has developed an interest in the country as well. “I have been reading books about South Africa, and I consider myself very privileged to have a second academic home here, which gives me the opportunity for exchange with people of different backgrounds,” he comments.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept