Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 April 2024 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Frank Zachos
Prof Frank Zachos recently delivered his inaugural lecture on the UFS Bloemfontein Campus.

Prof Frank Zachos, a scientist and Head of the Mammal Collection at the Natural History Museum (NHM) in Vienna – one of the world’s largest natural history museums – recently delivered his inaugural lecture at the University of the Free State (UFS) on the Bloemfontein Campus.

His lecture was titled: Of bat bombs and super moms – the wondrous and wondrously curious world of mammals.

Prof Zachos, an affiliated researcher at the UFS, says he chose mammals as the topic of his lecture because he is a mammalogist and curator of mammals at the Natural History Museum. Additionally, he collaborates with Prof Paul Grobler, Head of the Department of Genetics, on mammal projects.

Exposure to almost unparalleled biodiversity in SA

With a mixture of entertaining fun facts and some proper research results, he presented his lecture, providing an overview of some of the most interesting aspects of mammals. These included their different ways of reproduction: the platypuses laying eggs, the tiny marsupial offspring growing in a pouch, and placental mammals having long gestation times. Furthermore, he compared levels of biodiversity in South Africa and Europe and highlighted some particularly bizarre mammals, such as the aye-aye, naked mole-rat, the platypus, and two extinct South African ungulates from their collection in Vienna – the quagga and the blue antelope.

Prof Zachos also discussed his own research on blue antelope genetics, as well as research on other species, in the context of the detrimental impact humans have on mammals and other wildlife.

Moreover, his lecture included a reference to Project X-Ray, a story of how the US army pursued an unsuccessful plan to use bats as carriers of mini bombs in World War II.

Prof Zachos, who is specifically known for his research on the systematics, biogeography, and genetics of red deer, as well as his theoretical work on the species problem (‘what is a species?’ –  one of the most hotly debated topics in evolutionary biology), is affiliated with the UFS due to his longstanding collaboration with Prof Grobler. He says they have known each other for a long time, have published together, and that he has also served as an external reviewer for several theses coming from the Department of Genetics.

“Apart from this personal connection, what made this collaboration particularly interesting to me from a professional viewpoint, is the rich wildlife biodiversity and the research focus of Prof Grobler’s research group, which overlaps significantly with my own longstanding interests,” adds Prof Zachos.

“Working with Prof Grobler, I am involved in studies on the genetic diversity and structuring of different mammal species occurring in South Africa. The opportunity to spend time in the field for sample collection and other activities is definitely also a highlight,” remarks Prof Zachos.

Ideal combination of academic and personal growth

Regarding his connection with the UFS and its impact on shaping the future direction of his research, he states that he has a strong interest in antelopes – a group of mammals not found in Europe, but very prominent in South Africa. “Apart from that, people in the Department of Genetics have expertise in relevant areas that I personally do not have, for example bioinformatics. For me, it is the ideal combination of academic and personal growth, and I am very grateful to have this unique opportunity.”

He believes that his affiliation with the UFS and its Department of Genetics will continue to provide him with opportunities to expand his research and knowledge to different species and ecosystems.

Beyond science, he says that he has developed an interest in the country as well. “I have been reading books about South Africa, and I consider myself very privileged to have a second academic home here, which gives me the opportunity for exchange with people of different backgrounds,” he comments.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept