Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 April 2024 | Story Anthony Mthembu | Photo Supplied
Melanie Ridgard
Melanie Ridgard celebrates receiving a Master of Business Administration (MBA) at the graduation ceremony held at the UFS Bloemfontein campus on 19 April 2024.

In the realm of self-development, few stories are as inspiring as that of Melanie Ridgard, the Interim Administration and Events Coordinator at the South African Research Chair in Industrial Development (SARChI-ID) at the University of Johannesburg (UJ). Ridgard’s forthcoming graduation with a Master in Business Administration (MBA) on 19 April 2024 from the University of the Free State (UFS) marks not only a personal triumph but also a testament to the transformative power of higher education.

Reflecting on her journey, Ridgard shares, “This moment signifies a culmination of rigorous studying, dedication and perseverance in mastering business fundamentals, leadership skills and strategic thinking.” Her pursuit of an MBA stemmed from a pivotal moment in her career when she was promoted at the Centre for Teaching and Learning (CTL) at UFS. Tasked with leading a group of young people Ridgard recognised the need to augment her knowledge to effectively guide her colleagues. The MBA became her vehicle for professional growth, extending beyond a mere qualification to a profound transformation of her leadership capabilities.

“Attaining an MBA milestone represents a transformative experience that has shaped my thinking to make impactful contributions in any future landscape,” Ridgard explains. Her experience not only enhanced her strategic acumen but also deepened her understanding of organisational dynamics. She acknowledges the pivotal role played by the UFS Business School in nurturing her journey towards academic and personal success.

What to expect from Ridgard

Looking ahead, Ridgard’s commitment to continuous learning remains unwavering. Selected as one of five MBA students to address the 17th International Business Conference (IBC) in September 2024, she eagerly anticipates the opportunity to share insights on her work titled, “Next-Gen Integration: Navigating the Onboarding Maze for Gen Z in Today's Workplace.” Despite her current responsibilities at UJ, she harbors plans to pursue a PhD in the near future.

Amidst her ambitious pursuits, Ridgard remains grounded, prioritising the celebration of her MBA achievement. ‘’As everyone dreams about it, I just want to walk over that stage in a black gown and a hood on my head with my loved ones cheering me on,’’ she shared.

Ridgard’s journey serves as a beacon of inspiration, exemplifying the transformative potential of education and the enduring impact of determined leadership. Her story reminds us that true leadership is not merely about reaching milestones but also about empowering others and embracing continuous growth. 

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept