Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2024 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Nkosingiphile Zondi
Nkosingiphile Zondi graduated with a BAgric Mixed Farming degree. In March, he also released his first music album, Ngingohlakaniphile.

If you have ever browsed music on YouTube, Spotify, or Apple Music and came across the 15-track album, Ngingohlakaniphile, you would never have guessed that the young man on the cover – dressed in light colours of grey and white – has another passion: farming.

Nkosingiphile Zondi, hailing from a small rural area called Tugela Ferry in KwaZulu-Natal, graduated with a Bachelor of Agriculture, majoring in Mixed Farming Management, at the April graduation ceremonies of the University of the Free State (UFS).

According to Zondi, his love for nature, animals, and their well-being motivated him to pursue a degree in mixed farming.

Two milestone events in one month

Zondi, who describes himself as open to new ideas, hardworking, and someone who values respect (something his parents taught him), says he is excited and grateful for achieving two milestones: obtaining his degree and releasing his first album, both within a month's time (his album was released on 22 March 2024). “I have never been so happy in my life,” he remarks.

Regarding balancing farming and music in the future, he says it won't be a problem because he managed to do both in the past few years. Dr Phumudzo Tharaga, Lecturer in Agrometeorology in the Department of Soil, Crop, and Climate Sciences, says that Zondi managed to graduate in record time while pursuing his music career. “This is a unique talent,” he comments.

He believes that his music will help people see life from a different perspective. “Life is not only about struggles. There's also happiness after struggling. I hope that my music can heal people, ease the pain at times, and bring them happiness,” he says.

People to relate to the messages in his songs

On the other hand, he hopes that his music can generate income, which he believes will be helpful if he wants to own a farm. He looks forward to his music bringing him a better life.

Zondi describes his music as maskanda (traditional), representing the Zulu culture. “Those interested in the culture can gain something through this music. When I compose or write a song, I ensure that people can relate to the message being delivered,” he says, adding that his songs reflect people’s lives, often his own, as well as everyday occurrences.

He features as the lead guitarist and also handles vocals and composition. Zondi is accompanied by other musicians on bass guitar, keyboard, and concertina. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept