Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 April 2024 | Story André Damons | Photo Supplied
Dr Milton Mogotsi
Dr Milton Mogotsi graduated on Thursday with the degree Doctor of Philosophy with specialisation in Virology during the Faculty of Health Sciences at the University of the Free State (UFS) autumn graduation ceremonies.

A pilot study for his master’s degree not only ignited Dr Milton Mogotsi’s passion but he was also inspired by the fact that this was a newly emerging field of research in the discipline of virology at the time. This eventually led to him pursuing a PhD and ing on his research.

Dr Mogotsi graduated on Thursday (18 April) with the degree Doctor of Philosophy with specialisation in Virology during the Faculty of Health Sciences at the University of the Free State (UFS) autumn graduation ceremonies. Prof Martin Nyaga, Head of the Next Generation Sequencing Unit (UFS-NGS) and an associate professor in the Division of Virology, was his promotor and Prof Trudi O’Neill from the Department of Microbiology and Biochemistry his co-promotor.

“It feels great! It was exhausting and overwhelming at times, but that light at the end of the tunnel will start to be brighter. I feel so proud of myself and very free. Nothing beats that liberating feeling that I have successfully completed a doctoral degree and now a new chapter of my life begins. I believe this post-PhD period is an excellent time for reflecting on my attributes and revising my CV, and with a PhD degree under my belt, I look forward to an abundance of opportunities that will soon open up,” says Dr Mogotsi after graduating.

Research

According to him, he was first introduced into this research concept when he was doing his master’s degree in microbiology. “Although it was more of a pilot study aiming to assess the feasibility of conducting this type of research on a larger scale, we made some interesting findings which we published in an international journal.

“I obtained my degree with distinction, receiving an award for Best Master’s Dissertation in Microbiology. The findings of this research really ignited my passion, and I was also inspired by the fact that this was a newly emerging field of research in the discipline of virology at the time, and of course in my master’s research there were some gaps and limitations which needed to be addressed. I then took a decision to pursue a PhD and expand on that research, and working with new-born babies is always enjoyable,” says Dr Mogotsi. 

With his thesis titled “Longitudinal characterisation of the enteric virome of infants from the Free State, South Africa, using viral metagenomics”, Dr Mogotsi’s research aimed to characterise the total assemblage of all viruses that colonise the gastrointestinal tract of newborns, often referred to as the gut virome, using metagenomics.

“We know that the human gut undergoes some changes as the new-born baby becomes exposed to the numerous microorganisms, such as viruses, from the immediate environment. This once-in-a-lifetime occurrence can have life-long effects on the health and disease state of humans. Viral intestinal infections are among the leading causes of childhood hospitalisations and deaths, especially in Africa, and infants are at a greater risk of suffering severe illnesses due to their immature immune system,” he explains.

According to him, previous research had focused more on the investigating the population of bacteria present in the gut of new-borns, therefore, there’s a huge knowledge gap about viruses colonising this part of the human body. In South Africa, more attention has been on assessing the effectiveness of currently available vaccines and surveillance of specific disease-causing viruses such as rotavirus.

The research he was conducting, he continues, therefore, sought to characterise all intestinal viruses in healthy new-borns individuals, their source of origin, the changes in diversity and composition occurring over time, as well as their potential implications on the health of infants. “The findings of my study have provided more insights into what is known or new viruses are colonising the infants’ gut, as well as their evolution over time”, he adds.

PhD journey

Even though he had to put his PhD on hold for a year due to COVID-19, but with the resilience, persistence, and his ability to clear the roadblocks that were in his way, he managed to complete it. He also credits his supportive mentors and a community of colleagues and friends for their unwavering support throughout his academic journey.

“After a year-long delay, I was able to go ahead with the project and everything went well from sample collection and sample processing in the lab. The challenging part was analysing and interpreting the data as this involved advanced bioinformatics, but in the end, I was able to find solutions and make sense out of the results I got. The study was a great success with two publications in peer-reviewed international journals emanating from this study.

“Furthermore, I had an opportunity to present my research in local and international conferences. I have been to Ghana, Nigeria and Indonesia. Locally, I presented in a conference in Johannesburg and in Cape Town. More exciting was participating in the Three Minute Thesis (3MT) competition in which I emerged victorious, winning the National 3MT competition. The other award I received was from the Faculty of Health Sciences Research Forum, winning the Dr Lehlohonolo Mathengtheng Trophy for best PhD presentation”, says Dr Mogotsi.

Motivation

Dr Mogotsi says the fact that he comes from the township and received his secondary education from a township school always kept him motivated. He is well aware that there are many who look up to him, who are also inspired by what he has achieved.

“More importantly, my supervisor, Prof Nyaga, was very supportive and he is very active in his research field with genuine interest in student projects, while making time to provide adequate supervision and mentorship. His high standards of ensuring that students graduate with a strong publication record is commendable.”

As a coordinator of wet lab activities at the UFS-NGS Unit, Dr Mogotsi is currently involved in several projects as the unit is a World Health Organisation Collaborating Center for Vaccine Preventable Diseases and Pathogen Genomics. They are doing collaborative projects with several partners across the continent on the genomic surveillance of enteric viruses such as rotavirus, norovirus, sapovirus, astrovirus and adenoviruses. 

News Archive

Eye tracker device a first in Africa
2013-07-31

 

 31 July 2013

Keeping an eye on empowerment

"If we can see what you see, we can think what you think."

Eye-tracking used to be one of those fabulous science-fiction inventions, along with Superman-like bionic ability. Could you really use the movement of your eyes to read people's minds? Or drive your car? Or transfix your enemy with a laser-beam?

Well, actually, yes, you can (apart, perhaps, from the laser beam… ). An eye tracker is not something from science fiction; it actually exists, and is widely used around the world for a number of purposes.

Simply put, an eye tracker is a device for measuring eye positions and eye movement. Its most obvious use is in marketing, to find out what people are looking at (when they see an advertisement, for instance, or when they are wandering along a supermarket aisle). The eye tracker measures where people look first, what attracts their attention, and what they look at the longest. It is used extensively in developed countries to predict consumer behaviour, based on what – literally – catches the eye.

On a more serious level, psychologists, therapists and educators can also use this device for a number of applications, such as analysis and education. And – most excitingly – eye tracking can be used by disabled people to use a computer and thereby operate a number of devices and machines. Impaired or disabled people can use eye tracking to get a whole new lease on life.

In South Africa and other developing countries, however, eye tracking is not widely used. Even though off-the-shelf webcams and open-source software can be obtained extremely cheaply, they are complex to use and the quality cannot be guaranteed. Specialist high-quality eye-tracking devices have to be imported, and they are extremely expensive – or rather – they used to be. Not anymore.

The Department of Computer Science and Informatics (CSI) at the University of the Free State has succeeded in developing a high-quality eye tracker at a fraction of the cost of the imported devices. Along with the hardware, the department has also developed specialised software for a number of applications. These would be useful for graphic designers, marketers, analysts, cognitive psychologists, language specialists, ophthalmologists, radiographers, occupational and speech therapists, and people with disabilities. In the not-too-distant future, even fleet owners and drivers would be able to use this technology.

"The research team at CSI has many years of eye-tracking experience," says team leader Prof Pieter Blignaut, "both with the technical aspect as well as the practical aspect. We also provide a multi-dimensional service to clients that includes the equipment, training and support. We even provide feedback to users.

"We have a basic desktop model available that can be used for research, and can be adapted so that people can interact with a computer. It will be possible in future to design a device that would be able to operate a wheelchair. We are working on a model incorporated into a pair of glasses which will provide gaze analysis for people in their natural surroundings, for instance when driving a vehicle.

"Up till now, the imported models have been too expensive," he continues. "But with our system, the technology is now within reach for anyone who needs it. This could lead to economic expansion and job creation."

The University of the Free State is the first manufacturer of eye-tracking devices in Africa, and Blignaut hopes that the project will contribute to nation-building and empowerment.

"The biggest advantage is that we now have a local manufacturer providing a quality product with local training and support."

In an eye-tracking device, a tiny infra-red light shines on the eye and causes a reflection which is picked up by a high-resolution camera. Every eye movement causes a change in the reflection, which is then mapped. Infra-red light is not harmful to the eye and is not even noticed. Eye movement is then completely natural.

Based on eye movements, a researcher can study cognitive patterns, driver behaviour, attention spans, even thinking patterns. A disabled person could use their eye-movements to interact with a computer, with future technology (still in development) that would enable that computer to control a wheelchair or operate machinery.

The UFS recently initiated the foundation of an eye-tracking interest group for South Africa (ETSA) and sponsor a biennial-eye tracking conference. Their website can be found at www.eyetrackingsa.co.za.

“Eye tracking is an amazing tool for empowerment and development in Africa, “ says Blignaut, “but it is not used as much as it should be, because it is seen as too expensive. We are trying to bring this technology within the reach of anyone and everyone who needs it.”

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cell: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept