Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 April 2024 | Story André Damons | Photo Supplied
Dr Milton Mogotsi
Dr Milton Mogotsi graduated on Thursday with the degree Doctor of Philosophy with specialisation in Virology during the Faculty of Health Sciences at the University of the Free State (UFS) autumn graduation ceremonies.

A pilot study for his master’s degree not only ignited Dr Milton Mogotsi’s passion but he was also inspired by the fact that this was a newly emerging field of research in the discipline of virology at the time. This eventually led to him pursuing a PhD and ing on his research.

Dr Mogotsi graduated on Thursday (18 April) with the degree Doctor of Philosophy with specialisation in Virology during the Faculty of Health Sciences at the University of the Free State (UFS) autumn graduation ceremonies. Prof Martin Nyaga, Head of the Next Generation Sequencing Unit (UFS-NGS) and an associate professor in the Division of Virology, was his promotor and Prof Trudi O’Neill from the Department of Microbiology and Biochemistry his co-promotor.

“It feels great! It was exhausting and overwhelming at times, but that light at the end of the tunnel will start to be brighter. I feel so proud of myself and very free. Nothing beats that liberating feeling that I have successfully completed a doctoral degree and now a new chapter of my life begins. I believe this post-PhD period is an excellent time for reflecting on my attributes and revising my CV, and with a PhD degree under my belt, I look forward to an abundance of opportunities that will soon open up,” says Dr Mogotsi after graduating.

Research

According to him, he was first introduced into this research concept when he was doing his master’s degree in microbiology. “Although it was more of a pilot study aiming to assess the feasibility of conducting this type of research on a larger scale, we made some interesting findings which we published in an international journal.

“I obtained my degree with distinction, receiving an award for Best Master’s Dissertation in Microbiology. The findings of this research really ignited my passion, and I was also inspired by the fact that this was a newly emerging field of research in the discipline of virology at the time, and of course in my master’s research there were some gaps and limitations which needed to be addressed. I then took a decision to pursue a PhD and expand on that research, and working with new-born babies is always enjoyable,” says Dr Mogotsi. 

With his thesis titled “Longitudinal characterisation of the enteric virome of infants from the Free State, South Africa, using viral metagenomics”, Dr Mogotsi’s research aimed to characterise the total assemblage of all viruses that colonise the gastrointestinal tract of newborns, often referred to as the gut virome, using metagenomics.

“We know that the human gut undergoes some changes as the new-born baby becomes exposed to the numerous microorganisms, such as viruses, from the immediate environment. This once-in-a-lifetime occurrence can have life-long effects on the health and disease state of humans. Viral intestinal infections are among the leading causes of childhood hospitalisations and deaths, especially in Africa, and infants are at a greater risk of suffering severe illnesses due to their immature immune system,” he explains.

According to him, previous research had focused more on the investigating the population of bacteria present in the gut of new-borns, therefore, there’s a huge knowledge gap about viruses colonising this part of the human body. In South Africa, more attention has been on assessing the effectiveness of currently available vaccines and surveillance of specific disease-causing viruses such as rotavirus.

The research he was conducting, he continues, therefore, sought to characterise all intestinal viruses in healthy new-borns individuals, their source of origin, the changes in diversity and composition occurring over time, as well as their potential implications on the health of infants. “The findings of my study have provided more insights into what is known or new viruses are colonising the infants’ gut, as well as their evolution over time”, he adds.

PhD journey

Even though he had to put his PhD on hold for a year due to COVID-19, but with the resilience, persistence, and his ability to clear the roadblocks that were in his way, he managed to complete it. He also credits his supportive mentors and a community of colleagues and friends for their unwavering support throughout his academic journey.

“After a year-long delay, I was able to go ahead with the project and everything went well from sample collection and sample processing in the lab. The challenging part was analysing and interpreting the data as this involved advanced bioinformatics, but in the end, I was able to find solutions and make sense out of the results I got. The study was a great success with two publications in peer-reviewed international journals emanating from this study.

“Furthermore, I had an opportunity to present my research in local and international conferences. I have been to Ghana, Nigeria and Indonesia. Locally, I presented in a conference in Johannesburg and in Cape Town. More exciting was participating in the Three Minute Thesis (3MT) competition in which I emerged victorious, winning the National 3MT competition. The other award I received was from the Faculty of Health Sciences Research Forum, winning the Dr Lehlohonolo Mathengtheng Trophy for best PhD presentation”, says Dr Mogotsi.

Motivation

Dr Mogotsi says the fact that he comes from the township and received his secondary education from a township school always kept him motivated. He is well aware that there are many who look up to him, who are also inspired by what he has achieved.

“More importantly, my supervisor, Prof Nyaga, was very supportive and he is very active in his research field with genuine interest in student projects, while making time to provide adequate supervision and mentorship. His high standards of ensuring that students graduate with a strong publication record is commendable.”

As a coordinator of wet lab activities at the UFS-NGS Unit, Dr Mogotsi is currently involved in several projects as the unit is a World Health Organisation Collaborating Center for Vaccine Preventable Diseases and Pathogen Genomics. They are doing collaborative projects with several partners across the continent on the genomic surveillance of enteric viruses such as rotavirus, norovirus, sapovirus, astrovirus and adenoviruses. 

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept