Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 April 2024 | Story Anthony Mthembu | Photo Francois van Vuuren
Varsity Cup Shimlas
The FNB UFS Shimlas are confident to emerge victorious as they prepare to go against the FNB UCT Ikeys in FNB Varsity Cup final.

The FNB UFS Shimlas are confident of securing a win in the 2024 FNB Varsity Cup final as they prepare to take on the FNB UCT Ikeys at the University of the Free State (UFS) Shimla Park in Bloemfontein on 22 April 2024 at 19:00. 

This marks the first time since 2015 that the final is being hosted at Shimla Park. As such, the Shimlas hope to use this home ground advantage to emerge victorious.

Prof Francis Petersen, Vice-Chancellor and Principal of the UFS, says he commends each player for their dedication, resilience, and sportsmanship throughout the season. “I will be cheering on the team – their efforts and commitment have already made us proud, and we look forward to supporting them on home ground. We are also immensely grateful to the coaching team for their support to the Shimlas. Good luck to the team, and know that every fellow Kovsie is behind you,” says Prof Petersen.

The Shimlas advanced to the final after a 38-24 win over the FNB Maties in the semi-finals held at the Danie Craven Stadium in Stellenbosch on 15 April 2024. According to André Tredoux, Head Coach of the FNB UFS Shimlas, this is a tremendous win for the team, as the FNB Maties have only lost ten times in the history of the FNB Varsity Cup when playing at home. In addition, he credits Assistant Coaches Melusi Mthethwa and Tiaan Liebenberg’s hard work for the success of the team up to this point.

The mindset of the UFS Shimlas heading into the final

According to Tredoux, the team assumes a new approach and mindset in preparation for each game. In the semi-finals, the team adopted the motto ‘breathe to succeed’, which helped align the focus and attitude of the team in the game. However, as the final approaches, he indicates that, “The big thing going into a final is to stick to our processes with our intensity, and then also for the medical team and the strength and conditioning team to get the team healthy”.

In addition, Tredoux encourages the UFS community to show up in their numbers to support the FNB UFS Shimlas. “The technical team will have a good plan and the players are ready to play with everything for the Cup. We have the firepower to do it with the support of the Kovsie students,” Tredoux expressed. He also highlights that those in attendance can expect a great atmosphere and some ‘awesome rugby’. This is because the FNB UFS Young Guns will also battle the FNB NWU Young Guns at Shimla Park on 22 April 2024 from 15:30.

Those interested in seeing any of this action can still purchase their tickets on the Varsity Cup website here

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept