Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2024 | Story DR NITHA RAMNATH

The Vice-Chancellor and Principal of the University of the Free State, Prof Francis Petersen, has the pleasure of inviting you to a guest lecture presented by H.E. Dr Reuben E Brigety, the United States Ambassador to South Africa.

Date: Tuesday 23 April 2024
Time: 15:00-16:00
Venue: Centenary Complex, Bloemfontein Campus

RSVP here by no later than 19 April 2024.


About the speaker

Reuben E Brigety II was confirmed as the 29th United States Ambassador to the Republic of South Africa on 21 July 2022.

Previously, he served as the 17th Vice-Chancellor of the University of the South and Mayor of Sewanee from June 2020 until December 2021, and as the Dean of the Elliott School of International Affairs of the George Washington University from 2015 to 2020. Ambassador Brigety’s most recent diplomatic assignment was serving as the US Representative to the African Union and US Permanent Representative to the UN Economic Commission for Africa from September 2013 to September 2015. Previously, Ambassador Brigety served as the Deputy Assistant Secretary of State in the Bureau of African Affairs and as Deputy Assistant Secretary of State in the Bureau of Population, Refugees, and Migration.

A native of Jacksonville, Florida, Ambassador Brigety also held appointments as Assistant Professor of Government and Politics at George Mason University and at the School of International Service at the American University between August 2003 and April 2009. In addition, Ambassador Brigety was a researcher with the Arms Division of Human Rights Watch (HRW) from August 2001 to May 2003, where he conducted research missions in Afghanistan and Iraq. Before joining HRW, Ambassador Brigety was an active-duty US naval officer and held several staff positions in the Pentagon and in fleet support units.

Ambassador Brigety is a 1995 Distinguished Midshipman Graduate of the US Naval Academy, where he earned a BSc in Political Science (with merit), served as the Brigade Commander, and received the Thomas G Pownall Scholarship. He also holds an MPhil and a PhD in International Relations from the University of Cambridge, England, as well as a Doctor of Humane Letters (honoris causa) from Old Dominion University. Ambassador Brigety is a life member of the Council on Foreign Relations, a recipient of the council’s International Affairs Fellowship, and a fellow of the American Academy of Diplomacy.He is married to Dr Leelie Selassie, and together they have two sons.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept