Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2024 | Story Anthony Mthembu | Photo Supplied
Mia Pretorius
Mia Pretorius, one of the accountancy graduates from the UFS Class of 2023, excelled in the SAICA ITC examination, securing the 6th position nationally.

The accountancy graduates of the University of the Free State (UFS), Class of 2023, have showcased their excellence by achieving an impressive 86% pass rate in the January 2024 Initial Test of Competence (ITC) examination administered by the South African Institute of Chartered Accountants (SAICA). This achievement underscores the rigorous academic standards and dedication upheld by both the students and the esteemed faculty of the UFS School of Accountancy.

Prof Frans Prinsloo, Director of the School of Accountancy at UFS, expressed profound satisfaction at these remarkable results. He remarked, ‘’This achievement bears testament to the many hours of hard work invested over many years by the UFS School of Accountancy team and its students, and it brings us great joy.’’

Among the shining stars of this accomplishment is Mia Pretorius, a SAICA Audit Trainee at Deloitte in Cape Town and a distinguished UFS alumnus. Pretorius clinched the sixth position nationwide in the exam, surpassing over 2000 graduates across the country. Reflecting on her achievement, Pretorius conveyed her overwhelming gratitude, acknowledging the challenging nature of the examination, particularly the time constraints. She attributed her success to the comprehensive preparation received at UFS, stating, ‘’We wrote some difficult examinations during my time at UFS, so I was well prepared and found the ITC to be a bit easier than some of the exams that were written at UFS.’’

Prof Prinsloo lauded Pretorius’s success as a testament to the effectiveness of the CA programme at UFS, stating,’ Our CA programme not only enables our graduates to pass the ITC examination but, in fact, empowers them also to excel.’’

The significance of this accomplishment extends beyond individual success stories. Prof Prinsloo emphasised that the SAICA ITC examination serves as a crucial benchmark for evaluating the quality of the Chartered Accountancy (CA) programme offered at UFS. He elaborated, ‘’These results signify that the CA programme offered by the UFS not only develops our students’ technical competence in the subject areas of Financial Accounting, Auditing, Taxation and Managerial Accounting and Finance to the appropriate level but also equips them with the essential professional skills.’’

With aspirations for their students to make meaningful contributions to their respective fields and communities, Prof Prinsloo expressed hope that these accomplished students uphold ethical standards and serve as inspiration for our future students.

The achievements of the UFS accounting graduates of 2023 in the SAICA ITC examination underscore the university’s commitment to academic excellence and the holistic development of its students. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept