Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2024 | Story Athembele Yangaphi | Photo Supplied
Dr Tafadzwa Maramura and Christopher Strydom
Dr Tafadzwa Maramura and Christopher Strydom at 2024 ASSADPAM Ceremony at the University of Pretoria's Future Africa Campus.

A trio of 2024 University of the Free State (UFS) honours-degree graduates recently represented the UFS at the 2024 Association of Southern African Schools and Departments of Public Administration and Management (ASSADPAM) Conference.

Nameera Bade, Christopher Strydom, and Thato Tshabalala’s presentation was based on their 2023 honours research titled ‘Exploring the Influence of Loadshedding on Water Governance: A Case of the Mangaung Metropolitan Municipality’, which earned them each a distinction on their honours degree completion.

The 2024 ASSADPAM Conference was held at the University of Pretoria's Future Africa Campus and brought together academics and practitioners in the field of public administration and management.

The three graduates are currently continuing their studies by taking on master’s degrees in administration – Bade and Strydom at the UFS and Tshabalala at the University of South Africa.

“Presenting our study at the ASSADPAM Conference was an absolute honour,” Strydom said. “However, I did experience some imposter syndrome, because usually it is only PhD candidates and tenured academics that present their work at the conference, [not a] first-year master’s student presenting out of his honours mini-dissertation. But I quickly got over my imposter syndrome by reframing the situation.”

The trio’s conference presentation was preceded by their recognition for Best Presentation at the UFS second Library and Information Services Honours and Undergraduate Seminar (LISHURS) Symposium on 5 April 2024.

“Being awarded the best presentation at the second LISHURS confirmed how impactful our research is, how it resonates with people. And it was also satisfying to get credit for the hard work we have put in,” said Strydom, who also received two awards at the 2024 Faculty of Economic Management Sciences (EMS) Prize Function: Best Honours Student in the Department of Public Administration and Management, and Best Honours Student in the EMS Faculty – prizes sponsored by the Kovsie Alumni Trust.

Dr Tafadzwa Maramura, Senior Lecturer in the UFS’s Department of Public Administration and Management, co-presented the research with the students at the conference. “Working with Nameera, Chris, and Thato has been a great experience. All of them are talented and unique individuals,” Dr Maramura said.

Impactful research in public governance

He highlighted the significance of the students' research, stating, “[Their paper] has certainly had a profound impact on the EMS Faculty.”

Dr Maramura further emphasised the department's commitment to addressing real-world challenges through rigorous academic inquiry, praising the students for engaging in relevant and timely research initiatives.

The collaboration between the three students and Dr Maramura extends beyond conference presentations: they are set to write an article based on their honours research for publication in a journal, which will further establish their names within the water-energy sphere and contribute to ongoing discussions in public governance.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept