Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2024 | Story Athembele Yangaphi | Photo Supplied
Dr Tafadzwa Maramura and Christopher Strydom
Dr Tafadzwa Maramura and Christopher Strydom at 2024 ASSADPAM Ceremony at the University of Pretoria's Future Africa Campus.

A trio of 2024 University of the Free State (UFS) honours-degree graduates recently represented the UFS at the 2024 Association of Southern African Schools and Departments of Public Administration and Management (ASSADPAM) Conference.

Nameera Bade, Christopher Strydom, and Thato Tshabalala’s presentation was based on their 2023 honours research titled ‘Exploring the Influence of Loadshedding on Water Governance: A Case of the Mangaung Metropolitan Municipality’, which earned them each a distinction on their honours degree completion.

The 2024 ASSADPAM Conference was held at the University of Pretoria's Future Africa Campus and brought together academics and practitioners in the field of public administration and management.

The three graduates are currently continuing their studies by taking on master’s degrees in administration – Bade and Strydom at the UFS and Tshabalala at the University of South Africa.

“Presenting our study at the ASSADPAM Conference was an absolute honour,” Strydom said. “However, I did experience some imposter syndrome, because usually it is only PhD candidates and tenured academics that present their work at the conference, [not a] first-year master’s student presenting out of his honours mini-dissertation. But I quickly got over my imposter syndrome by reframing the situation.”

The trio’s conference presentation was preceded by their recognition for Best Presentation at the UFS second Library and Information Services Honours and Undergraduate Seminar (LISHURS) Symposium on 5 April 2024.

“Being awarded the best presentation at the second LISHURS confirmed how impactful our research is, how it resonates with people. And it was also satisfying to get credit for the hard work we have put in,” said Strydom, who also received two awards at the 2024 Faculty of Economic Management Sciences (EMS) Prize Function: Best Honours Student in the Department of Public Administration and Management, and Best Honours Student in the EMS Faculty – prizes sponsored by the Kovsie Alumni Trust.

Dr Tafadzwa Maramura, Senior Lecturer in the UFS’s Department of Public Administration and Management, co-presented the research with the students at the conference. “Working with Nameera, Chris, and Thato has been a great experience. All of them are talented and unique individuals,” Dr Maramura said.

Impactful research in public governance

He highlighted the significance of the students' research, stating, “[Their paper] has certainly had a profound impact on the EMS Faculty.”

Dr Maramura further emphasised the department's commitment to addressing real-world challenges through rigorous academic inquiry, praising the students for engaging in relevant and timely research initiatives.

The collaboration between the three students and Dr Maramura extends beyond conference presentations: they are set to write an article based on their honours research for publication in a journal, which will further establish their names within the water-energy sphere and contribute to ongoing discussions in public governance.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept