Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 August 2024 Photo Supplied
Dr Peet van Aardt
Dr Peet van Aardt is the head of the UFS Writing Centre and the Coordinator of the Initiative for Creative African Narratives (iCAN).

Opinion article by Dr Peet van Aardt, Centre for Teaching and Learning and Head of the UFS Writing Centre, University of the Free State. 


The use and permittance of artificial intelligence tools such as ChatGPT at the University of the Free State (UFS) should be discouraged, writes Dr Peet van Aardt.

A decade ago, academics were encouraged to find ways to incorporate social media platforms like Facebook and Twitter in their teaching. Seeing as students were spending so much time on these platforms, the idea was that we need to take the classroom to them. Until they found out young people do not use social media to study, but rather to create and share entertainment content.

During the late 2000s, News24.com, the biggest news website in Africa, went on a mission to nurture and expand what was known as “community journalism” because everybody started owning smartphones, the news outlet’s leadership thought it was the opportunity to provide a platform for people to share photos, videos and stories of news events that took place around them. Until they realised that the vast majority of people didn’t want to contribute to journalism; they merely wanted to consume it.

Lest we assume students will use AI in a responsible and productive manner, at the UFS Writing Centre we find that students over-rely on ChatGPT in their assignments and essays. We should do everything in our power to discourage its use because it threatens what we do at a university on three levels.

It’s an educational issue

There are five main academic literacies we want to teach our students: reading, writing, speaking, listening and critical thinking. When students prompt ChatGPT to write their essay for them, immediately the reading and writing literacies are discarded because the student does not write the essay, nor do they read any source material that would help them form an argument. Critical thinking goes out the window, because it is merely a copy-and-paste job they are performing. And speaking? We see in the Writing Centre that students who use ChatGPT cannot discuss their “work”. The student voice is being killed.

There are lecturers who take the approach of motivating students to use prompted content from ChatGPT in order to critique and discuss the AI output. This is fine, should the students be operating at a level where their academic literacies have been established. In short: for postgraduate use it might be acceptable. Undergraduate students need to go through the process of becoming scholars and master their subject matter before they can be expected to critique it. It is basic pedagogy, and our duty as staff at the UFS, because it aligns with the Graduate Attribute of Critical Thinking.

It’s a moral issue

In addition to the academic literacies we attempt to instil in our students are attributes of ethical reasoning and written communication. The fact that AI tools “scrape” the internet for content without any consent from the content creators means that it is committing plagiarism. It is theft – “the greatest heist in history” as some refer to it. Do we want our students to develop digital skills and competencies on immoral grounds? Because often this is the reason given when students are encouraged or allowed to use AI: “The technology is there, and therefore we must learn to go with the flow and let the students to use it.” By this reasoning one can make the argument that the UFS rugby team (go, Shimlas!) must use performance-enhancing substances because it will make the players faster, stronger and “the technology is there”.

Academics also face a moral dilemma as there seems to brew a view that fire should be fought with fire: that AI can assist and even lead in tasks such as plagiarism detection, assessment and content development. But fighting fire with fire just burns down the house. Let us not look to AI to lessen our workload.

It’s an economic issue

Technology in education should be used to level the playing field. Companies develop online tools with a primary goal of making money – despite what the bandwagon passengers in the East and West promise us. Their operations cost a lot of money, and so they release free versions to get people hooked on it, and then they develop better products and place them behind a paywall. What this then means is that students who can afford subscription costs get access to the premium product, while the poor students get left behind. How can we assess two students who cannot make use of the same version of a tool? This will widen the gap in performance between students from different economic backgrounds. And consider the deletion of the authentic student voice (as alluded to earlier), these AI tools just represent a new platform for colonisation and therefore have no place in our institution.

OK, so what?

Lecturers who want advice on how to detect overreliance on AI tools can have a look at this video, which forms part of the AI Wayfinder Series – a brilliant project by the UFS’s Interdisciplinary Centre for Digital Futures and the Digital Scholarship Centre. These centres also have other helpful resources to check out.

But as an institution we need to produce a policy on how to deal with the threat and possibilities of AI. (Because in society and in certain disciplines it can make a contribution – just not for undergraduate studies in a university context.) Currently, a team that includes staff from the Faculty of Law and that of Economic and Management Sciences is busy drafting guidelines which departments can implement. Then, after a while, a review of these guidelines-in-practice can be done to lead us on the path of establishing a concrete policy.

If we as educators consider the facts that the use of AI tools impede the development of academic literacies (on undergraduate level), it silences local, authentic voices and it can create further economic division among our student community, we should not promote its use at our institution. Technology is not innovative if it does not improve something.

Dr Peet van Aardt is the Head of the UFS Writing Centre and the Coordinator of the Initiative for Creative African Narratives (iCAN). Before joining the UFS in 2014 he was the Community Editor of News24.com. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept