Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 August 2024 | Story Mbali Moiketsi
Alexander Solomons
EMS honours student Alexander Solomons has been awarded the 2024/2025 Ernst Mach Grant to take part in an exchange programme with FH Salzburg University.

Alexander Solomons, an honours student in the Faculty of Economic and Management Sciences at the University of the Free State (UFS), has been awarded the prestigious Ernst Mach Grant for the 2024/2025 academic year. This competitive grant will enable Solomons to participate in an exchange programme at FH Salzburg University, one of Europe’s leading institutions for higher education and research, in Salzburg, Austria.

The Ernst Mach Grant, named after the renowned physicist and philosopher Ernst Mach, is funded by the Austrian Federal Ministry of Education, Science, and Research. It aims to foster international academic exchange and support students who demonstrate exceptional academic merit and a strong commitment to their field of study.

“Spending time abroad did not seem like something that I would be able to do so early in my life,” Solomons said. “Coming from Scottsville, Kraaifontein, in the Western Cape, I never thought that I would be able to take part in opportunities such as this one.”

“Alexander’s selection as an Ernst Mach Grant recipient is a testament to his hard work, dedication, and the high standards of academic programmes at the UFS,” said Lynette Jacobs, Acting Director in the Office for International Affairs at the UFS.

During his time at FH Salzburg University, Solomons will have the opportunity to immerse himself in a vibrant academic environment, engage with leading scholars in his field, and access cutting-edge resources and facilities. “I will have the opportunity to deepen my knowledge and engage in a different form of high-impact learning,” he said. “Professionally, international experience can be valuable in the advancement of my career. Being exposed to global practices as well as networking has the potential to enhance my career prospects and potentially open doors for me in the country I originate from and internationally.”

Jacobs added that this programme will not only enhance Solomons’ academic and professional development but also strengthen the international ties between the UFS and FH Salzburg University.

"I am thrilled to witness the incredible opportunities scholarship programmes offer to our students,” she said. “Scholarships like the Ernst Mach Grant not only provide financial support but also open doors to unparalleled academic and cultural experiences. I strongly encourage all UFS students to explore these opportunities and apply for scholarships. Studying abroad can be a life-changing experience, offering new perspectives, fostering personal growth, and building a global network.”

In addition to his academic pursuits, Solomons will serve as an ambassador for the UFS, sharing his experiences and insights with his peers and faculty members at FH Salzburg University. He intends to integrate the knowledge gained into research and projects he takes on in the future. He believes the exposure to diverse opinions can help him approach problems from a more global perspective, and help him think in a more adaptable and inclusive manner.

“His participation in this exchange programme will contribute to the ongoing efforts to promote international collaboration and cultural exchange within our academic community,” Jacobs said.

Students and staff interested in applying for scholarships are welcome to contact Mbali Moiketsi, Study Abroad Officer  in the Office for International Affairs on the top floor of the Theology Building.  Information about scholarships is shared regularly through channels such as newsletters, social media, and the UFS website.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept