Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 August 2024 | Story Mbali Moiketsi
Alexander Solomons
EMS honours student Alexander Solomons has been awarded the 2024/2025 Ernst Mach Grant to take part in an exchange programme with FH Salzburg University.

Alexander Solomons, an honours student in the Faculty of Economic and Management Sciences at the University of the Free State (UFS), has been awarded the prestigious Ernst Mach Grant for the 2024/2025 academic year. This competitive grant will enable Solomons to participate in an exchange programme at FH Salzburg University, one of Europe’s leading institutions for higher education and research, in Salzburg, Austria.

The Ernst Mach Grant, named after the renowned physicist and philosopher Ernst Mach, is funded by the Austrian Federal Ministry of Education, Science, and Research. It aims to foster international academic exchange and support students who demonstrate exceptional academic merit and a strong commitment to their field of study.

“Spending time abroad did not seem like something that I would be able to do so early in my life,” Solomons said. “Coming from Scottsville, Kraaifontein, in the Western Cape, I never thought that I would be able to take part in opportunities such as this one.”

“Alexander’s selection as an Ernst Mach Grant recipient is a testament to his hard work, dedication, and the high standards of academic programmes at the UFS,” said Lynette Jacobs, Acting Director in the Office for International Affairs at the UFS.

During his time at FH Salzburg University, Solomons will have the opportunity to immerse himself in a vibrant academic environment, engage with leading scholars in his field, and access cutting-edge resources and facilities. “I will have the opportunity to deepen my knowledge and engage in a different form of high-impact learning,” he said. “Professionally, international experience can be valuable in the advancement of my career. Being exposed to global practices as well as networking has the potential to enhance my career prospects and potentially open doors for me in the country I originate from and internationally.”

Jacobs added that this programme will not only enhance Solomons’ academic and professional development but also strengthen the international ties between the UFS and FH Salzburg University.

"I am thrilled to witness the incredible opportunities scholarship programmes offer to our students,” she said. “Scholarships like the Ernst Mach Grant not only provide financial support but also open doors to unparalleled academic and cultural experiences. I strongly encourage all UFS students to explore these opportunities and apply for scholarships. Studying abroad can be a life-changing experience, offering new perspectives, fostering personal growth, and building a global network.”

In addition to his academic pursuits, Solomons will serve as an ambassador for the UFS, sharing his experiences and insights with his peers and faculty members at FH Salzburg University. He intends to integrate the knowledge gained into research and projects he takes on in the future. He believes the exposure to diverse opinions can help him approach problems from a more global perspective, and help him think in a more adaptable and inclusive manner.

“His participation in this exchange programme will contribute to the ongoing efforts to promote international collaboration and cultural exchange within our academic community,” Jacobs said.

Students and staff interested in applying for scholarships are welcome to contact Mbali Moiketsi, Study Abroad Officer  in the Office for International Affairs on the top floor of the Theology Building.  Information about scholarships is shared regularly through channels such as newsletters, social media, and the UFS website.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept