Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 August 2024 | Story Precious Shamase | Photo Yonela Vimba
commuter lounge Qwaqwa Campus
The new commuter lounge is designed to provide off-campus students with a comfortable and conducive environment for studying, socialising, and relaxation.

The University of the Free State (UFS) Qwaqwa Campus recently celebrated a significant milestone with the preliminary opening of its new commuter lounge. This dedicated space is designed to provide off-campus students with a comfortable and conducive environment for study, socialising, and relaxation.

A diverse crowd gathered to witness the historic event, including university staff and students from the off-campus community.

In his opening remarks, Vice-Principal: Support Services, Teboho Manchu, expressed his enthusiasm for the project. He highlighted the challenges previously faced by off-campus students who lacked adequate study spaces on campus. The new commuter lounge addresses this issue by offering a welcoming environment where students can connect, collaborate, and engage in intellectual discourse.

Quintin Koetaan, Senior Director: Housing and Residence Affairs, shared insights into the journey of bringing the lounge to fruition. He emphasised the collaborative efforts of various stakeholders and expressed gratitude to Coke for its generous sponsorship through the Alumni Office. The lounge also features a laundry facility, a valuable addition for students residing off campus. “Sitting here today really gives me goosebumps, because it is a dream come true for quite a number of people. This student lounge reflects an identity of what it is to be a Kovsie. It reflects us as the university, which is underpinned by the principles of diversity and accessibility. We want to give every one of our students access to a facility they can feel proud of, a facility where intellectual engagement can happen outside of class. This is a dream in terms of Vision 130, which demands of us to create these kinds of spaces that allow for positive interaction to encourage academic success,” expounded Koetaan.

A member of the Student Representative Council (SRC), Potela Zimvo, expressed the SRC’s appreciation for the new facility. He emphasised that the commuter lounge symbolises the university's commitment to inclusivity and support for all students, regardless of their residence status. The lounge is expected to foster a strong sense of community among commuter students and provide a much-needed space for social interaction and academic engagement. “To the university and campus management, thank you for recognising this initiative and providing the necessary resources. We hope that this place will become a central hub for our commuter students and that it will establish a sense of belonging for them. We appreciate the fact that this commuter lounge is equipped with laundry facilities, which will be helpful to our commuter students amid the water and electricity crisis that the Qwaqwa community faces,” said Zimvo.

The official opening ceremony of the commuter lounge is scheduled for later in the year, when it will be officially opened by the Vice-Chancellor and Principal of the University of the Free State, Prof Francis Petersen. However, the university has decided to make the facility available to students immediately to allow them to benefit from the amenities.

This new commuter lounge is a testament to the university's dedication to creating an inclusive and supportive campus environment for all students. It is a space where students can thrive academically and socially, contributing to their overall university experience.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept