Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 August 2024 | Story Precious Shamase | Photo Yonela Vimba
commuter lounge Qwaqwa Campus
The new commuter lounge is designed to provide off-campus students with a comfortable and conducive environment for studying, socialising, and relaxation.

The University of the Free State (UFS) Qwaqwa Campus recently celebrated a significant milestone with the preliminary opening of its new commuter lounge. This dedicated space is designed to provide off-campus students with a comfortable and conducive environment for study, socialising, and relaxation.

A diverse crowd gathered to witness the historic event, including university staff and students from the off-campus community.

In his opening remarks, Vice-Principal: Support Services, Teboho Manchu, expressed his enthusiasm for the project. He highlighted the challenges previously faced by off-campus students who lacked adequate study spaces on campus. The new commuter lounge addresses this issue by offering a welcoming environment where students can connect, collaborate, and engage in intellectual discourse.

Quintin Koetaan, Senior Director: Housing and Residence Affairs, shared insights into the journey of bringing the lounge to fruition. He emphasised the collaborative efforts of various stakeholders and expressed gratitude to Coke for its generous sponsorship through the Alumni Office. The lounge also features a laundry facility, a valuable addition for students residing off campus. “Sitting here today really gives me goosebumps, because it is a dream come true for quite a number of people. This student lounge reflects an identity of what it is to be a Kovsie. It reflects us as the university, which is underpinned by the principles of diversity and accessibility. We want to give every one of our students access to a facility they can feel proud of, a facility where intellectual engagement can happen outside of class. This is a dream in terms of Vision 130, which demands of us to create these kinds of spaces that allow for positive interaction to encourage academic success,” expounded Koetaan.

A member of the Student Representative Council (SRC), Potela Zimvo, expressed the SRC’s appreciation for the new facility. He emphasised that the commuter lounge symbolises the university's commitment to inclusivity and support for all students, regardless of their residence status. The lounge is expected to foster a strong sense of community among commuter students and provide a much-needed space for social interaction and academic engagement. “To the university and campus management, thank you for recognising this initiative and providing the necessary resources. We hope that this place will become a central hub for our commuter students and that it will establish a sense of belonging for them. We appreciate the fact that this commuter lounge is equipped with laundry facilities, which will be helpful to our commuter students amid the water and electricity crisis that the Qwaqwa community faces,” said Zimvo.

The official opening ceremony of the commuter lounge is scheduled for later in the year, when it will be officially opened by the Vice-Chancellor and Principal of the University of the Free State, Prof Francis Petersen. However, the university has decided to make the facility available to students immediately to allow them to benefit from the amenities.

This new commuter lounge is a testament to the university's dedication to creating an inclusive and supportive campus environment for all students. It is a space where students can thrive academically and socially, contributing to their overall university experience.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept