Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2024 | Story Martinette Brits | Photo Supplied
Dr Luther van der Mescht
Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology.

Ticks that feed on South Africa’s cattle are developing resistance to the only effective pesticides, making them increasingly difficult to control. If this issue is not addressed, the spread of these parasites and their resistance to pesticides could significantly impact farmers' incomes and food security.

According to a study by Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology, many tick populations in South Africa are resistant to at least two of the three main types of acaricides (chemical classes) used in the country.

Dr Van der Mescht notes that with around 12 million cattle in South Africa, these ticks not only lower meat and milk production but also carry pathogens that can cause potentially fatal diseases. He estimates that the economic losses from tick-borne diseases and the use of acaricides could reach up to R670 million annually in the cattle industry alone.

He adds that South Africa's agricultural sector is unique due to its dual farming system, which includes both subsistence and commercial farmers, amplifying the impact of ticks. “The country is also home to a wide variety of tick species that transmit numerous pathogens across a diverse range of habitats and climates in which cattle are farmed. Consequently, the effects of ticks and tick-borne diseases in South Africa may be more severe compared to those in developed countries.”

Dr Van der Mescht highlights that ticks are developing resistance primarily due to poor farm management practices, such as underdosing, overdosing, and excessive use of acaricides. “Additionally, insufficient government support in educating farmers and managing resistance exacerbates the problem.”

Managing acaricide resistance

Dr Van der Mescht explains that while ticks will inevitably develop resistance to acaricides, this usually happens much slower if pesticides are used strategically. To slow the development of resistance, several measures can be implemented: 

• Minimise the number of acaricide treatments.
• Assess tick diversity and acaricide resistance at the farm level and monitor it regularly. The study found that acaricide resistance was highly variable across South Africa, likely due to different farm management practices; hence it should be assessed at the farm level.
• Quarantine animals when transferring them to a new farm, ensuring they are free of ticks before releasing them.
• Rotate acaricides from different chemical classes, with a gap of at least two years between applications.

• Government veterinary services should raise awareness about acaricide resistance and provide support, particularly to under-resourced farmers. Establishing acaricide resistance testing laboratories would help monitor resistance and offer guidance to farmers.

Expert in parasitology

Dr Van der Mescht is particularly fascinated by the fact that most animals on earth follow a parasitic way of life. He graduated with a PhD in Conservation Ecology from the Department of Conservation Ecology and Entomology at Stellenbosch University in 2015, focusing on rodent parasites.

Career highlights include receiving the Wilhelm Neitz Memorial Scholarship in Parasitology from the Parasitological Society of Southern Africa (PARSA) for study abroad, and the Blaustein Centre for Scientific Cooperation Postdoctoral Fellowship in 2016 from Ben-Gurion University of the Negev, Israel, to conduct research on the experimental evolution of host specialisation. He also received the Claude Leon Foundation Postdoctoral Fellowship in 2019 to study the cat flea at Stellenbosch University’s Department of Botany and Zoology.

With over four years of experience in the industry at a contract research organisation, he has conducted more than 40 clinical studies for international pharmaceutical companies and published over 50 peer-reviewed scientific articles.

Making research visible, impactful, and relevant to society

Dr Van der Mescht recently published an article for The Conversation and participated in interviews with eNCA, Newzroom Afrika, and Cape Talk to discuss his research. “This effort aligns with the Vision 130 strategy of being a regionally engaged university and supports one of the key pillars of research development at the University of the Free State (UFS), which is to make our research visible, impactful, and relevant to society.”

He also highlighted the significance of popular science, noting that it helps scientists communicate their research to a broader audience, build their professional reputation, enhance their funding opportunities, and improve their research outcomes.

News Archive

Out-of-the-box thinking a plus for next generation of agribusiness leaders
2017-07-07

Description: Agribusiness leaders Tags: Agribusiness leaders 

The winners of the 12th IFAMA International Student
Case Competition from Team South Africa are from
the left: JW Swanepoel, University of the Free State,
Melissa van der Merwe, University of Pretoria,
Heinrich Jantjies, Stellenbosch University, and
Johann Boonzaaier, also from Stellenbosch University.
Photo: Supplied



The International Food and Agribusiness Management Association’s International Student Case Competition, in its 12th year, brings together students from around the world to demonstrate their investigative and problem-solving skills to provide innovative solutions to practical problems.

JW Swanepoel, a PhD student at the Centre for Sustainable Agriculture at the University of the Free State (UFS) was part of an advanced case study team, representing South African universities, who won IFAMA’s International Student Case Competition. Swanepoel also presented results from his PhD study at IFAMA’s conference in Miami, Florida, where the winners were announced.

Competition a global stage to showcase solutions

The competition provides a global stage for students and their associated universities to showcase the next generation of agribusiness leaders.

This year the featured agribusiness was Bayer Crop Science. Although this company managed to expand its global footprint through its Food Chain Partnership, it faced some challenges to expand in emerging economies through small-scale farmers. Being from the African continent, Swanepoel and his team not only understood Bayer’s unique challenge but could also pre-empt some of the potential problems faced by agribusinesses that wanted to grow their footprint in emerging economies. This provided them with a competitive advantage in going head-to-head with some of the best universities in the world such as Purdue, Wageningen, Michigan, Texas A & M and Santa Clara to mention just a few.

The South African team’s presentation “Selling Lindiwe’s story” told the story of a small-scale woman cassava farmer in Mozambique who, after the death of her husband, became the main breadwinner. The South African team indicated how Bayer could play a major role in not only selling chemicals to these farmers but even more importantly to change the stories of small-scale farmers like Lindiwe. They recommended a strategic partnership with AB InBev as the main buyer for the cassava produced by these small-scale farmers, as a cheaper beer base substitute. They also recommended a local partner (Value Chain Insights) that understood the political, social and economic environment of these countries to facilitate the relationships between Bayer and its small-scale farmers.

Understanding the challenge a competitive advantage

According to the panel of judges, the innovative approach and motivations for investing in strategic partnerships with AB InBev and Value Chain Insights went beyond financial benefits, to include corporate social responsibility and rural development. Lindiwe’s story was, however, the decisive factor. The South African team was the only team to put a face and a story to the often invisible small-scale farmers.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept