Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2024 | Story Martinette Brits | Photo Supplied
Dr Luther van der Mescht
Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology.

Ticks that feed on South Africa’s cattle are developing resistance to the only effective pesticides, making them increasingly difficult to control. If this issue is not addressed, the spread of these parasites and their resistance to pesticides could significantly impact farmers' incomes and food security.

According to a study by Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology, many tick populations in South Africa are resistant to at least two of the three main types of acaricides (chemical classes) used in the country.

Dr Van der Mescht notes that with around 12 million cattle in South Africa, these ticks not only lower meat and milk production but also carry pathogens that can cause potentially fatal diseases. He estimates that the economic losses from tick-borne diseases and the use of acaricides could reach up to R670 million annually in the cattle industry alone.

He adds that South Africa's agricultural sector is unique due to its dual farming system, which includes both subsistence and commercial farmers, amplifying the impact of ticks. “The country is also home to a wide variety of tick species that transmit numerous pathogens across a diverse range of habitats and climates in which cattle are farmed. Consequently, the effects of ticks and tick-borne diseases in South Africa may be more severe compared to those in developed countries.”

Dr Van der Mescht highlights that ticks are developing resistance primarily due to poor farm management practices, such as underdosing, overdosing, and excessive use of acaricides. “Additionally, insufficient government support in educating farmers and managing resistance exacerbates the problem.”

Managing acaricide resistance

Dr Van der Mescht explains that while ticks will inevitably develop resistance to acaricides, this usually happens much slower if pesticides are used strategically. To slow the development of resistance, several measures can be implemented: 

• Minimise the number of acaricide treatments.
• Assess tick diversity and acaricide resistance at the farm level and monitor it regularly. The study found that acaricide resistance was highly variable across South Africa, likely due to different farm management practices; hence it should be assessed at the farm level.
• Quarantine animals when transferring them to a new farm, ensuring they are free of ticks before releasing them.
• Rotate acaricides from different chemical classes, with a gap of at least two years between applications.

• Government veterinary services should raise awareness about acaricide resistance and provide support, particularly to under-resourced farmers. Establishing acaricide resistance testing laboratories would help monitor resistance and offer guidance to farmers.

Expert in parasitology

Dr Van der Mescht is particularly fascinated by the fact that most animals on earth follow a parasitic way of life. He graduated with a PhD in Conservation Ecology from the Department of Conservation Ecology and Entomology at Stellenbosch University in 2015, focusing on rodent parasites.

Career highlights include receiving the Wilhelm Neitz Memorial Scholarship in Parasitology from the Parasitological Society of Southern Africa (PARSA) for study abroad, and the Blaustein Centre for Scientific Cooperation Postdoctoral Fellowship in 2016 from Ben-Gurion University of the Negev, Israel, to conduct research on the experimental evolution of host specialisation. He also received the Claude Leon Foundation Postdoctoral Fellowship in 2019 to study the cat flea at Stellenbosch University’s Department of Botany and Zoology.

With over four years of experience in the industry at a contract research organisation, he has conducted more than 40 clinical studies for international pharmaceutical companies and published over 50 peer-reviewed scientific articles.

Making research visible, impactful, and relevant to society

Dr Van der Mescht recently published an article for The Conversation and participated in interviews with eNCA, Newzroom Afrika, and Cape Talk to discuss his research. “This effort aligns with the Vision 130 strategy of being a regionally engaged university and supports one of the key pillars of research development at the University of the Free State (UFS), which is to make our research visible, impactful, and relevant to society.”

He also highlighted the significance of popular science, noting that it helps scientists communicate their research to a broader audience, build their professional reputation, enhance their funding opportunities, and improve their research outcomes.

News Archive

Renowned forensic scientist speaks at the UFS
2014-04-02


Forensic science is about the truth. At the presentation delivered by Dr David Klatzow, were, from the left: Tinus Viljoen, lecturer in Forensic Genetics, Dr Klatzow and Laura Heathfield, also a lecturer in Forensic Genetics.
Photo: Leonie Bolleurs 

It is necessary for more research to be done in the field of forensic science in South Africa. This is according to Dr David Klatzow, well-known forensic scientist, during a lecture delivered at the University of the Free State (UFS) last week.

The university is offering, for the first time this year, a BSc degree in Forensic Science in the Department of Genetics. This three-year degree is, among others, directed at people working for the South African Police Service on crime scenes and on criminal cases in forensic laboratories. Students can also study up to PhD level, specialising in various forensic fields.

There is no accredited forensic laboratory in South Africa. “It is time to look differently at forensic science, and to deliver research papers on the subject. In light of the manner in which science is applied, we have to look differently at everything,” Dr Klatzow said.

Dr Klatzow praised the university for its chemistry-based course. “Chemistry is a strong basis for forensic science,” he said.

A paradigm shift in terms of forensic science is needed. Micro scratches on bullets, fingerprints, DNA, bite marks – all of these are forensic evidence that in the past led to people being wrongfully hanged. This evidence is not necessarily the alpha and omega of forensic science today. DNA, which seems to be the golden rule, can produce problems in itself. Because a person leaves DNA in his fingerprint, it is possible that DNA is transferred from one crime scene to another by forensic experts dusting for fingerprints. According to Dr Klatzow, this is only one of the problems that could be experienced with DNA evidence.

“No single set of forensic evidence is 100% effective or without problems. Rather approach the crime scene through a combination of evidence, by collecting fingerprints, DNA, etc. It is also very important to look at the context in which the events happened.

“A person sees what he expects to see. This causes huge problems in terms of forensic science. For example, if a criminal fits the profile of the perpetrator, it doesn’t follow that this specific criminal is the culprit. It isn’t what we don’t know that gives us trouble, it’s what we know that isn’t so,” Dr Klatzow said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept