Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2024 | Story Martinette Brits | Photo Supplied
Dr Luther van der Mescht
Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology.

Ticks that feed on South Africa’s cattle are developing resistance to the only effective pesticides, making them increasingly difficult to control. If this issue is not addressed, the spread of these parasites and their resistance to pesticides could significantly impact farmers' incomes and food security.

According to a study by Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology, many tick populations in South Africa are resistant to at least two of the three main types of acaricides (chemical classes) used in the country.

Dr Van der Mescht notes that with around 12 million cattle in South Africa, these ticks not only lower meat and milk production but also carry pathogens that can cause potentially fatal diseases. He estimates that the economic losses from tick-borne diseases and the use of acaricides could reach up to R670 million annually in the cattle industry alone.

He adds that South Africa's agricultural sector is unique due to its dual farming system, which includes both subsistence and commercial farmers, amplifying the impact of ticks. “The country is also home to a wide variety of tick species that transmit numerous pathogens across a diverse range of habitats and climates in which cattle are farmed. Consequently, the effects of ticks and tick-borne diseases in South Africa may be more severe compared to those in developed countries.”

Dr Van der Mescht highlights that ticks are developing resistance primarily due to poor farm management practices, such as underdosing, overdosing, and excessive use of acaricides. “Additionally, insufficient government support in educating farmers and managing resistance exacerbates the problem.”

Managing acaricide resistance

Dr Van der Mescht explains that while ticks will inevitably develop resistance to acaricides, this usually happens much slower if pesticides are used strategically. To slow the development of resistance, several measures can be implemented: 

• Minimise the number of acaricide treatments.
• Assess tick diversity and acaricide resistance at the farm level and monitor it regularly. The study found that acaricide resistance was highly variable across South Africa, likely due to different farm management practices; hence it should be assessed at the farm level.
• Quarantine animals when transferring them to a new farm, ensuring they are free of ticks before releasing them.
• Rotate acaricides from different chemical classes, with a gap of at least two years between applications.

• Government veterinary services should raise awareness about acaricide resistance and provide support, particularly to under-resourced farmers. Establishing acaricide resistance testing laboratories would help monitor resistance and offer guidance to farmers.

Expert in parasitology

Dr Van der Mescht is particularly fascinated by the fact that most animals on earth follow a parasitic way of life. He graduated with a PhD in Conservation Ecology from the Department of Conservation Ecology and Entomology at Stellenbosch University in 2015, focusing on rodent parasites.

Career highlights include receiving the Wilhelm Neitz Memorial Scholarship in Parasitology from the Parasitological Society of Southern Africa (PARSA) for study abroad, and the Blaustein Centre for Scientific Cooperation Postdoctoral Fellowship in 2016 from Ben-Gurion University of the Negev, Israel, to conduct research on the experimental evolution of host specialisation. He also received the Claude Leon Foundation Postdoctoral Fellowship in 2019 to study the cat flea at Stellenbosch University’s Department of Botany and Zoology.

With over four years of experience in the industry at a contract research organisation, he has conducted more than 40 clinical studies for international pharmaceutical companies and published over 50 peer-reviewed scientific articles.

Making research visible, impactful, and relevant to society

Dr Van der Mescht recently published an article for The Conversation and participated in interviews with eNCA, Newzroom Afrika, and Cape Talk to discuss his research. “This effort aligns with the Vision 130 strategy of being a regionally engaged university and supports one of the key pillars of research development at the University of the Free State (UFS), which is to make our research visible, impactful, and relevant to society.”

He also highlighted the significance of popular science, noting that it helps scientists communicate their research to a broader audience, build their professional reputation, enhance their funding opportunities, and improve their research outcomes.

News Archive

When entrepreneurship meets industrial innovation
2014-12-13

Johan Eksteen (Photo: Supplied)

Internationally acclaimed Argicon Pelleting is a worldwide supplier of pelleting machinery and equipment as well as agri-processing factories. The company was established in 1993 by André and Johan Eksteen, UFS 2004 MBA graduate. After taking over sole ownership, the company grew from a one-man business to an internationally respected specialist in the design and manufacturing of pelleting solutions for the agricultural industry.

A common practice in industrial procedures, pelleting involves processing material into small dry pellets. This is used globally by manufacturers of animal feed or recycling facilities that specialise in processing materials for reuse. This process, however, can only be successfully accomplished with specialised equipment, namely a pelletizer. With fifteen years’ experience in agriculture, and international exposure in countries such as Uganda, Australia, Singapore and New Caledonia, this was not a tall order for Johan.

Agricon focuses on consistently developing innovative ways to add value to its offering. The business has successfully installed pelleting equipment for a range of products, including tobacco dust, rooibos tea, human sludge waste, organic fertilizers and vermi-compost. In addition to the manufacturing of machines and equipment, the company also provides training and on-site installation for clients, as well as support following a sale or the provision of spare parts. The company also provides advice on new product developments and business opportunities for clients within the sector.

Apart from doubling its sales between 2013 and 2014, the company gained great recognition within the industry. Johan was awarded the University of the Free State Business School’s Entrepreneur award in 2013 and he is the first-prize winner of the ILO Free State EnterPRIZE Job Creation Challenge for 2014. He is currently one of 15 finalists countrywide in the Entrepreneur of the Year competition sponsored by Business Partners and Sanlam. Johan is the mentor and stand-in manager for Almenta, a skills development company (winner of the ILO Best Social Entrepreneur for Skills Development award) and Equus Groom School (winner of the ILO Social Entrepreneur in Youth Development award).

Johan was also announced as the winner of the SA entrepreneur of the year for small businesses.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept