Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2024 | Story Martinette Brits | Photo Supplied
Dr Luther van der Mescht
Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology.

Ticks that feed on South Africa’s cattle are developing resistance to the only effective pesticides, making them increasingly difficult to control. If this issue is not addressed, the spread of these parasites and their resistance to pesticides could significantly impact farmers' incomes and food security.

According to a study by Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology, many tick populations in South Africa are resistant to at least two of the three main types of acaricides (chemical classes) used in the country.

Dr Van der Mescht notes that with around 12 million cattle in South Africa, these ticks not only lower meat and milk production but also carry pathogens that can cause potentially fatal diseases. He estimates that the economic losses from tick-borne diseases and the use of acaricides could reach up to R670 million annually in the cattle industry alone.

He adds that South Africa's agricultural sector is unique due to its dual farming system, which includes both subsistence and commercial farmers, amplifying the impact of ticks. “The country is also home to a wide variety of tick species that transmit numerous pathogens across a diverse range of habitats and climates in which cattle are farmed. Consequently, the effects of ticks and tick-borne diseases in South Africa may be more severe compared to those in developed countries.”

Dr Van der Mescht highlights that ticks are developing resistance primarily due to poor farm management practices, such as underdosing, overdosing, and excessive use of acaricides. “Additionally, insufficient government support in educating farmers and managing resistance exacerbates the problem.”

Managing acaricide resistance

Dr Van der Mescht explains that while ticks will inevitably develop resistance to acaricides, this usually happens much slower if pesticides are used strategically. To slow the development of resistance, several measures can be implemented: 

• Minimise the number of acaricide treatments.
• Assess tick diversity and acaricide resistance at the farm level and monitor it regularly. The study found that acaricide resistance was highly variable across South Africa, likely due to different farm management practices; hence it should be assessed at the farm level.
• Quarantine animals when transferring them to a new farm, ensuring they are free of ticks before releasing them.
• Rotate acaricides from different chemical classes, with a gap of at least two years between applications.

• Government veterinary services should raise awareness about acaricide resistance and provide support, particularly to under-resourced farmers. Establishing acaricide resistance testing laboratories would help monitor resistance and offer guidance to farmers.

Expert in parasitology

Dr Van der Mescht is particularly fascinated by the fact that most animals on earth follow a parasitic way of life. He graduated with a PhD in Conservation Ecology from the Department of Conservation Ecology and Entomology at Stellenbosch University in 2015, focusing on rodent parasites.

Career highlights include receiving the Wilhelm Neitz Memorial Scholarship in Parasitology from the Parasitological Society of Southern Africa (PARSA) for study abroad, and the Blaustein Centre for Scientific Cooperation Postdoctoral Fellowship in 2016 from Ben-Gurion University of the Negev, Israel, to conduct research on the experimental evolution of host specialisation. He also received the Claude Leon Foundation Postdoctoral Fellowship in 2019 to study the cat flea at Stellenbosch University’s Department of Botany and Zoology.

With over four years of experience in the industry at a contract research organisation, he has conducted more than 40 clinical studies for international pharmaceutical companies and published over 50 peer-reviewed scientific articles.

Making research visible, impactful, and relevant to society

Dr Van der Mescht recently published an article for The Conversation and participated in interviews with eNCA, Newzroom Afrika, and Cape Talk to discuss his research. “This effort aligns with the Vision 130 strategy of being a regionally engaged university and supports one of the key pillars of research development at the University of the Free State (UFS), which is to make our research visible, impactful, and relevant to society.”

He also highlighted the significance of popular science, noting that it helps scientists communicate their research to a broader audience, build their professional reputation, enhance their funding opportunities, and improve their research outcomes.

News Archive

Research on locomotion of giraffes valuable for conservation of this species
2016-08-23

Description: Giraffe research 2016 Tags: Giraffe research 2016

Technology was used in filming the giraffes.
According to research, giraffes will slow
down when a drone is positioned
approximately 20 - 30 m away. When the
drone moves closer, they will revert
to galloping.
Photo: Charl Devenish


The meaning of the Arab term Giraffe Camelopardalis is ‘someone who walks fast’. It is precisely this locomotion of their longnecks that encouraged researchers, Dr Francois Deacon and Dr Chris Basu, to study the animals more closely.

Despite the fact that giraffes are such well-known animals, very little research has been done on the manner in which these graceful animals locomote from one place to the next. There are only two known ways of locomotion: the slower lateral walking and the faster galloping. Most animals use these ways of moving forward. It is unknown why giraffes avoid intermediate-speed trotting.

Research of great value to the industry

Research on the manner in which giraffes locomote from one place to the next will assist the industry in understanding aspects such as their anatomy and function, as well as the energy they utilise in locomoting from one place to another. Information on the latter could help researchers understand where giraffes fit into the ecosystem. This data is of great value for large-scale conservation efforts.

Universities working together to collect data

Dr Basu, a veterinarian at the Royal Veterinary College in the UK, has studied the animals at a zoo park in the United Kingdom. He visited the University of the Free State (UFS) in order to expand his fieldwork on the locomotion of giraffes. This study was done in cooperation with Dr Deacon from the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research in South Africa and other African countries.

The fieldwork for the research, which was done in the Woodland Hills Wildlife Estate and the Willem Pretorius Nature Reserve, preceded research on the movement and the forces involved in the locomotion of giraffes. Due to the confined fenced area in the zoo park, it was practically impossible to study the animals at speed. “The study of actions ‘faster than walking’ is crucial for gathering data on, inter alia, the frequency, length, and time associated with each step.


Technology such as drones offers unique
opportunities to study animals like giraffes.



Technology used to ensure accuracyTechnology such as drones offers unique opportunities to study animals like giraffes. Apart from the fact that it is possible to get high-quality video material of giraffes – moving at speed – it is also a very controlled device that ensures the accuracy of data.

It is the first time ever that a study has been done on the locomotion of giraffes with this level of detail.
Research on the study will be published in the Journal of Experimental Biology.

The project was approved by the UFS ethics committee.

 

 

 

Previous research articles:

9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept