Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2024 | Story Martinette Brits | Photo Supplied
Dr Luther van der Mescht
Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology.

Ticks that feed on South Africa’s cattle are developing resistance to the only effective pesticides, making them increasingly difficult to control. If this issue is not addressed, the spread of these parasites and their resistance to pesticides could significantly impact farmers' incomes and food security.

According to a study by Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology, many tick populations in South Africa are resistant to at least two of the three main types of acaricides (chemical classes) used in the country.

Dr Van der Mescht notes that with around 12 million cattle in South Africa, these ticks not only lower meat and milk production but also carry pathogens that can cause potentially fatal diseases. He estimates that the economic losses from tick-borne diseases and the use of acaricides could reach up to R670 million annually in the cattle industry alone.

He adds that South Africa's agricultural sector is unique due to its dual farming system, which includes both subsistence and commercial farmers, amplifying the impact of ticks. “The country is also home to a wide variety of tick species that transmit numerous pathogens across a diverse range of habitats and climates in which cattle are farmed. Consequently, the effects of ticks and tick-borne diseases in South Africa may be more severe compared to those in developed countries.”

Dr Van der Mescht highlights that ticks are developing resistance primarily due to poor farm management practices, such as underdosing, overdosing, and excessive use of acaricides. “Additionally, insufficient government support in educating farmers and managing resistance exacerbates the problem.”

Managing acaricide resistance

Dr Van der Mescht explains that while ticks will inevitably develop resistance to acaricides, this usually happens much slower if pesticides are used strategically. To slow the development of resistance, several measures can be implemented: 

• Minimise the number of acaricide treatments.
• Assess tick diversity and acaricide resistance at the farm level and monitor it regularly. The study found that acaricide resistance was highly variable across South Africa, likely due to different farm management practices; hence it should be assessed at the farm level.
• Quarantine animals when transferring them to a new farm, ensuring they are free of ticks before releasing them.
• Rotate acaricides from different chemical classes, with a gap of at least two years between applications.

• Government veterinary services should raise awareness about acaricide resistance and provide support, particularly to under-resourced farmers. Establishing acaricide resistance testing laboratories would help monitor resistance and offer guidance to farmers.

Expert in parasitology

Dr Van der Mescht is particularly fascinated by the fact that most animals on earth follow a parasitic way of life. He graduated with a PhD in Conservation Ecology from the Department of Conservation Ecology and Entomology at Stellenbosch University in 2015, focusing on rodent parasites.

Career highlights include receiving the Wilhelm Neitz Memorial Scholarship in Parasitology from the Parasitological Society of Southern Africa (PARSA) for study abroad, and the Blaustein Centre for Scientific Cooperation Postdoctoral Fellowship in 2016 from Ben-Gurion University of the Negev, Israel, to conduct research on the experimental evolution of host specialisation. He also received the Claude Leon Foundation Postdoctoral Fellowship in 2019 to study the cat flea at Stellenbosch University’s Department of Botany and Zoology.

With over four years of experience in the industry at a contract research organisation, he has conducted more than 40 clinical studies for international pharmaceutical companies and published over 50 peer-reviewed scientific articles.

Making research visible, impactful, and relevant to society

Dr Van der Mescht recently published an article for The Conversation and participated in interviews with eNCA, Newzroom Afrika, and Cape Talk to discuss his research. “This effort aligns with the Vision 130 strategy of being a regionally engaged university and supports one of the key pillars of research development at the University of the Free State (UFS), which is to make our research visible, impactful, and relevant to society.”

He also highlighted the significance of popular science, noting that it helps scientists communicate their research to a broader audience, build their professional reputation, enhance their funding opportunities, and improve their research outcomes.

News Archive

UFS professor addresses genetically modified food in South Africa in inaugural lecture
2016-09-23

Description: Chris Viljoen inaugural lecture Tags: Chris Viljoen inaugural lecture

At the inaugural lecture were, from the left front,
Prof Lis Lange, Vice Rector: Academic;
Prof Chris Viljoen; Prof Gert van Zyl,
Dean: Faculty of Health Sciences; back: Prof Marius Coetzee,
Head of Department of Haematology and Cell Biology;
and Dr Lynette van der Merwe, Undergraduate
Programme Director.
Photo: Stephen Collett

The first genetically modified (GM) crops in South Africa were planted in 1998. Eighteen years later, the country is one of the largest producers of GM food in the world. Those in support of genetically modified crops say this process is the only way to feed a rapidly growing world population. But those who criticise GM food describe it as a threat to the environment and safety of the population. Who is right? According to Prof Chris Viljoen of the Department of Haematology and Cell Biology at the University of the Free State, neither position is well-founded.

GM crops play a vital role in food security

While GM crops have an important role to play in increasing food production, the technology is only part of the solution to providing sufficient food for a growing world population. The major genetically modified crops produced in the world include soybean, cotton, maize and canola. However, the authenticity of food labelling and the long-term safety of GM food are issues that consumers are concerned about.

Safety and labelling of GM food important in South Africa
In his inaugural lecture on the subject “Are you really going to eat that?” Prof Viljoen addressed the importance of the safety and labelling of GM food in the country. “In order for food to be sustainable, production needs to be economically and environmentally sustainable. On the other hand, food integrity, including food quality, authenticity and safety need to be ensured,” Prof Viljoen said. 

Labelling of food products for genetic modification was mandatory in South Africa, he went on to say. “It allows consumers the right of choice whether to eat genetically modified foods or not.” The Consumer Protection Act of 2008 requires food ingredients containing more than 5% of GM content to be labelled. 

GMO Testing Facility world leader in food diagnostic testing
In 1999, Prof Viljoen spearheaded research in developing a GM diagnostic testing platform, and in 2003, a commercial diagnostic platform for GM status certification, called the GMO Testing Facility, was founded. The facility is a licensed Eurofins GeneScan laboratory   a world leader in food diagnostic testing   and provides diagnostic detection and quantification of genetically modified organisms (GMOs) in grain and processed foods for the local and international market.

Molecular diagnostic technology the future of food integrity, authenticity and safety
With GM labelling now well-established in South Africa, the next challenge is to establish the use of molecular diagnostic technology to ensure that food integrity, including food authenticity and safety is maintained, said Prof Viljoen.

“To the question ‘Are you really going to eat that?’ the answer is ‘yes’, but let’s continue doing research to make sure that what we eat is safe and authentic.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept