Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2024 | Story Martinette Brits | Photo Supplied
Dr Luther van der Mescht
Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology.

Ticks that feed on South Africa’s cattle are developing resistance to the only effective pesticides, making them increasingly difficult to control. If this issue is not addressed, the spread of these parasites and their resistance to pesticides could significantly impact farmers' incomes and food security.

According to a study by Dr Luther van der Mescht, Senior Lecturer in the Department of Zoology and Entomology, many tick populations in South Africa are resistant to at least two of the three main types of acaricides (chemical classes) used in the country.

Dr Van der Mescht notes that with around 12 million cattle in South Africa, these ticks not only lower meat and milk production but also carry pathogens that can cause potentially fatal diseases. He estimates that the economic losses from tick-borne diseases and the use of acaricides could reach up to R670 million annually in the cattle industry alone.

He adds that South Africa's agricultural sector is unique due to its dual farming system, which includes both subsistence and commercial farmers, amplifying the impact of ticks. “The country is also home to a wide variety of tick species that transmit numerous pathogens across a diverse range of habitats and climates in which cattle are farmed. Consequently, the effects of ticks and tick-borne diseases in South Africa may be more severe compared to those in developed countries.”

Dr Van der Mescht highlights that ticks are developing resistance primarily due to poor farm management practices, such as underdosing, overdosing, and excessive use of acaricides. “Additionally, insufficient government support in educating farmers and managing resistance exacerbates the problem.”

Managing acaricide resistance

Dr Van der Mescht explains that while ticks will inevitably develop resistance to acaricides, this usually happens much slower if pesticides are used strategically. To slow the development of resistance, several measures can be implemented: 

• Minimise the number of acaricide treatments.
• Assess tick diversity and acaricide resistance at the farm level and monitor it regularly. The study found that acaricide resistance was highly variable across South Africa, likely due to different farm management practices; hence it should be assessed at the farm level.
• Quarantine animals when transferring them to a new farm, ensuring they are free of ticks before releasing them.
• Rotate acaricides from different chemical classes, with a gap of at least two years between applications.

• Government veterinary services should raise awareness about acaricide resistance and provide support, particularly to under-resourced farmers. Establishing acaricide resistance testing laboratories would help monitor resistance and offer guidance to farmers.

Expert in parasitology

Dr Van der Mescht is particularly fascinated by the fact that most animals on earth follow a parasitic way of life. He graduated with a PhD in Conservation Ecology from the Department of Conservation Ecology and Entomology at Stellenbosch University in 2015, focusing on rodent parasites.

Career highlights include receiving the Wilhelm Neitz Memorial Scholarship in Parasitology from the Parasitological Society of Southern Africa (PARSA) for study abroad, and the Blaustein Centre for Scientific Cooperation Postdoctoral Fellowship in 2016 from Ben-Gurion University of the Negev, Israel, to conduct research on the experimental evolution of host specialisation. He also received the Claude Leon Foundation Postdoctoral Fellowship in 2019 to study the cat flea at Stellenbosch University’s Department of Botany and Zoology.

With over four years of experience in the industry at a contract research organisation, he has conducted more than 40 clinical studies for international pharmaceutical companies and published over 50 peer-reviewed scientific articles.

Making research visible, impactful, and relevant to society

Dr Van der Mescht recently published an article for The Conversation and participated in interviews with eNCA, Newzroom Afrika, and Cape Talk to discuss his research. “This effort aligns with the Vision 130 strategy of being a regionally engaged university and supports one of the key pillars of research development at the University of the Free State (UFS), which is to make our research visible, impactful, and relevant to society.”

He also highlighted the significance of popular science, noting that it helps scientists communicate their research to a broader audience, build their professional reputation, enhance their funding opportunities, and improve their research outcomes.

News Archive

Famelab, the Pop Idols of science communication
2017-03-09

Description: Famelab Tags: UFS, CUT, Science, Competition, research, British Council, Famelab, NRF

Oluwasegun Kuloyo and Zanele Matsane proved to be
Bloemfontein’s young and wittiest science researchers.
They will represent the Free State at the Famelab
national semifinals in Johannesburg.
Photo: Oteng Mpete

Imagine sharks with laser beams attached to their heads and enzymes that wear coats, and yeasts that stage a coup d’état in your body when agitated. This was all explored at the FameLab Science Communication Competition. 

Hosting the FameLab regional competition was a collaborative effort between Dr Mikateko Hoppener, from the University of the Free State’s (UFS), the Centre for Research on Higher Education and Development (CRHED), and Edith Sempe from the Central University of Technology (CUT), Research and Development Unit. Taking place for the first time in the Free State, the event was held at the UFS Centenary Complex on 2 March 2017.

Witty minds make science fun

FameLab is a competition that promotes science and technology by creating a space for scientists to find their voices and reach public audiences. The Free State regional competition had 18 contestants and two emerged victorious on the day. Contestants had to ensure their three-minute talks were fun, charismatic, clear and entertaining.

The two regional winners were Oluwasegun Kuloyo, a PhD student with the department of Microbial Biochemical and Food Biotechnology at UFS, and Zanele Matsane, a Construction Management PhD student at CUT. 

Kuloyo's research deals with the management of the candida yeast which exists in most people’s bodies and which, with a healthy immune system can be kept under control, but when an immune system is compromised, the yeast reacts volatilely and can potentially lead to death in HIV/AIDS patients. 

Matsane’s research is centred on collaborative construction management inspired by the Toyota manufacturing process. She hopes to resolve the silos of construction and bring about a more harmonious and fluid process to construction projects, thus ensuring their successful completion. 

The panel of judges consisted of Oteng Mpete UFS Media Liaison Officer, Dr Elizabeth Conradie from the CUT Innovation Hub, and Prof Willie du Preez from the CUT Centre for Rapid Prototyping and Manufacturing, as well as Robert Inglis from JiveMedia Africa.

Local scientists become jet-setters 
The two regional winners will head to Johannesburg to compete at the FameLab national semifinals, and the South African winner will go on to compete against winners from over 30 countries on an international stage, at the Cheltenham Science Festival in the UK.

FameLab is a programme of the Cheltenham Science Festival and is implemented locally by the South African Agency for Science and Technology Advancement (SAASTA), the British Council, and JiveMedia Africa. The competition has been running in South Africa for the past five years.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept