Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 August 2024 | Story André Damons | Photo Supplied
Maricel-van-Rooyen
Maricél van Rooyen, Project Manager for Research Information Management System (RIMS) and Research Ethics Adviser in the Directorate Research Development (DRD) at the University of the Free State (UFS), is the Programme Coordinator for a first-of-its-kind Southern African Research and Innovation Management Association (SARIMA)/ COP webinar on Environment and Biosafety Research Ethics.

The University of the Free State (UFS) is playing host to a first-of-its-kind webinar on Environment and Biosafety Research Ethics later this month with Maricél van Rooyen, Project Manager for Research Information Management System (RIMS) and Research Ethics Adviser in the Directorate Research Development (DRD), playing a pivotal role.

The webinar, which is part of the Eastern Region Community of Practice (COP), is taking place on 20 August. The target market for this virtual workshop is Biosafety and Environmental Research Ethics Committee (REC) chairpersons and members, professionals including research management professionals, administrators, research compliance managers and advisers, and research directors in Southern Africa and beyond.

Van Rooyen will be the Programme Coordinator for this Southern African Research and Innovation Management Association (SARIMA)/ COP Research Ethics Webinar, while Prof Robert Bragg, chairperson of the UFS Environmental and Biological Research Ethics Committee (EBREC), will give a presentation on the establishment of an EBREC.

The UFS, Stellenbosch University and the University of the Witwatersrand, form part of the COP which is a SARIMA (Southern African Research and Innovation Management Association) initiative to assist and share research ethics questions between institutions to empower research management and ethics compliance. SARIMA assisted with the online hosting and advertising of the webinar.

Purpose of the webinar

“Environment and Biosafety Committees in South Africa are a new idea, and only a few institutions in the country have such a committee. The UFS and the other institutions that will present at the workshop, take a leading role because they have already registered committees in place. We want to share and assist with establishing and operating such committees,” says Van Rooyen.

According to her, the need for the webinar arises from the upsurge of research and innovation in biotechnology and related fields over the past two decades that has led to exciting new discoveries in areas such as the engineering of biological processes, gene editing, stem cell research, CRISPR-Cas9 technology, Synthetic Biology, recombinant DNA, LMOs and GMOs, to mention only a few.

These advances, however, have generated concerns about biosafety, biosecurity and adverse impacts on biodiversity and the environment, leading to the establishment of Research Ethics Committees (RECs) at Higher Education and Research Institutions dedicated to reviewing research with implications for biosafety and the environment.

These EBRECs are in the early stages of their establishment and formalisation in South Africa, and there is much uncertainty about their composition, scope, procedures of decision-making and the principles that should guide their deliberations and assessments.

Leading the charge

The UFS took the lead in South Africa in ensuring international ethical compliance in this extended area of research, by establishing its own Environmental and Biological Research Ethics Committee (EBREC) six years ago. The UFS EBREC is one of only two such ethics committees at a South African university that combines the biosafety committee with environmental and biological research ethics to ensure ethics compliance in these fields.  The initiative started with Van Rooyen and her RIMS EthicsTeam, (Willem Kilian and Amanda Smith). The university is again taking charge with this webinar, which is a first of its kind.  

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept