Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 August 2024 | Story André Damons | Photo Supplied
Maricel-van-Rooyen
Maricél van Rooyen, Project Manager for Research Information Management System (RIMS) and Research Ethics Adviser in the Directorate Research Development (DRD) at the University of the Free State (UFS), is the Programme Coordinator for a first-of-its-kind Southern African Research and Innovation Management Association (SARIMA)/ COP webinar on Environment and Biosafety Research Ethics.

The University of the Free State (UFS) is playing host to a first-of-its-kind webinar on Environment and Biosafety Research Ethics later this month with Maricél van Rooyen, Project Manager for Research Information Management System (RIMS) and Research Ethics Adviser in the Directorate Research Development (DRD), playing a pivotal role.

The webinar, which is part of the Eastern Region Community of Practice (COP), is taking place on 20 August. The target market for this virtual workshop is Biosafety and Environmental Research Ethics Committee (REC) chairpersons and members, professionals including research management professionals, administrators, research compliance managers and advisers, and research directors in Southern Africa and beyond.

Van Rooyen will be the Programme Coordinator for this Southern African Research and Innovation Management Association (SARIMA)/ COP Research Ethics Webinar, while Prof Robert Bragg, chairperson of the UFS Environmental and Biological Research Ethics Committee (EBREC), will give a presentation on the establishment of an EBREC.

The UFS, Stellenbosch University and the University of the Witwatersrand, form part of the COP which is a SARIMA (Southern African Research and Innovation Management Association) initiative to assist and share research ethics questions between institutions to empower research management and ethics compliance. SARIMA assisted with the online hosting and advertising of the webinar.

Purpose of the webinar

“Environment and Biosafety Committees in South Africa are a new idea, and only a few institutions in the country have such a committee. The UFS and the other institutions that will present at the workshop, take a leading role because they have already registered committees in place. We want to share and assist with establishing and operating such committees,” says Van Rooyen.

According to her, the need for the webinar arises from the upsurge of research and innovation in biotechnology and related fields over the past two decades that has led to exciting new discoveries in areas such as the engineering of biological processes, gene editing, stem cell research, CRISPR-Cas9 technology, Synthetic Biology, recombinant DNA, LMOs and GMOs, to mention only a few.

These advances, however, have generated concerns about biosafety, biosecurity and adverse impacts on biodiversity and the environment, leading to the establishment of Research Ethics Committees (RECs) at Higher Education and Research Institutions dedicated to reviewing research with implications for biosafety and the environment.

These EBRECs are in the early stages of their establishment and formalisation in South Africa, and there is much uncertainty about their composition, scope, procedures of decision-making and the principles that should guide their deliberations and assessments.

Leading the charge

The UFS took the lead in South Africa in ensuring international ethical compliance in this extended area of research, by establishing its own Environmental and Biological Research Ethics Committee (EBREC) six years ago. The UFS EBREC is one of only two such ethics committees at a South African university that combines the biosafety committee with environmental and biological research ethics to ensure ethics compliance in these fields.  The initiative started with Van Rooyen and her RIMS EthicsTeam, (Willem Kilian and Amanda Smith). The university is again taking charge with this webinar, which is a first of its kind.  

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept