Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 August 2024 | Story André Damons | Photo Supplied
Maricel-van-Rooyen
Maricél van Rooyen, Project Manager for Research Information Management System (RIMS) and Research Ethics Adviser in the Directorate Research Development (DRD) at the University of the Free State (UFS), is the Programme Coordinator for a first-of-its-kind Southern African Research and Innovation Management Association (SARIMA)/ COP webinar on Environment and Biosafety Research Ethics.

The University of the Free State (UFS) is playing host to a first-of-its-kind webinar on Environment and Biosafety Research Ethics later this month with Maricél van Rooyen, Project Manager for Research Information Management System (RIMS) and Research Ethics Adviser in the Directorate Research Development (DRD), playing a pivotal role.

The webinar, which is part of the Eastern Region Community of Practice (COP), is taking place on 20 August. The target market for this virtual workshop is Biosafety and Environmental Research Ethics Committee (REC) chairpersons and members, professionals including research management professionals, administrators, research compliance managers and advisers, and research directors in Southern Africa and beyond.

Van Rooyen will be the Programme Coordinator for this Southern African Research and Innovation Management Association (SARIMA)/ COP Research Ethics Webinar, while Prof Robert Bragg, chairperson of the UFS Environmental and Biological Research Ethics Committee (EBREC), will give a presentation on the establishment of an EBREC.

The UFS, Stellenbosch University and the University of the Witwatersrand, form part of the COP which is a SARIMA (Southern African Research and Innovation Management Association) initiative to assist and share research ethics questions between institutions to empower research management and ethics compliance. SARIMA assisted with the online hosting and advertising of the webinar.

Purpose of the webinar

“Environment and Biosafety Committees in South Africa are a new idea, and only a few institutions in the country have such a committee. The UFS and the other institutions that will present at the workshop, take a leading role because they have already registered committees in place. We want to share and assist with establishing and operating such committees,” says Van Rooyen.

According to her, the need for the webinar arises from the upsurge of research and innovation in biotechnology and related fields over the past two decades that has led to exciting new discoveries in areas such as the engineering of biological processes, gene editing, stem cell research, CRISPR-Cas9 technology, Synthetic Biology, recombinant DNA, LMOs and GMOs, to mention only a few.

These advances, however, have generated concerns about biosafety, biosecurity and adverse impacts on biodiversity and the environment, leading to the establishment of Research Ethics Committees (RECs) at Higher Education and Research Institutions dedicated to reviewing research with implications for biosafety and the environment.

These EBRECs are in the early stages of their establishment and formalisation in South Africa, and there is much uncertainty about their composition, scope, procedures of decision-making and the principles that should guide their deliberations and assessments.

Leading the charge

The UFS took the lead in South Africa in ensuring international ethical compliance in this extended area of research, by establishing its own Environmental and Biological Research Ethics Committee (EBREC) six years ago. The UFS EBREC is one of only two such ethics committees at a South African university that combines the biosafety committee with environmental and biological research ethics to ensure ethics compliance in these fields.  The initiative started with Van Rooyen and her RIMS EthicsTeam, (Willem Kilian and Amanda Smith). The university is again taking charge with this webinar, which is a first of its kind.  

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept