Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 August 2024 | Story André Damons | Photo Supplied
Prof Patricks Voua Otomo
Prof Patricks Voua Otomo, Associate Professor and subject head of Department of Zoology and Entomology at the University of the Free State (UFS).

In an effort to alleviate the burden of water contamination, Prof Patricks Voua Otomo, Associate Professor in the Department of Zoology and Entomology at the University of the Free (UFS) is researching how mushrooms can be used to significantly reduce the toxicity of water.

The degradation of river systems in South Africa has been linked primarily to the inability of municipalities to properly treat wastewater. According to the 2022 Green Drop Report, out of the existing 850 wastewater systems across 90 municipalities, only 23 (or less than 3%) qualified for the Green Drop Certification. This underscores the depth and breadth of the wastewater treatment crisis in South Africa and its potential implications for human and environmental health.

In 2030, billions of people will still lack access to safe water, sanitation and hygiene services – the most basic human need for health and well-being. Target 6.1 of the United Nations (UN) Sustainable Development Goals (SDGs) – SDG 6 – aims to achieve universal and equitable access to safe and affordable drinking water for all, while target 6.3 is also looking to improve water quality by reducing pollution, eliminating dumping and minimising release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe re-use globally by 2030.

These challenges inform Prof Voua Otomo’s research, which focuses on the drivers of river pollution in the Qwaqwa region, ways to mitigate/remediate their effects, and the development of simple and quick methods to assess water quality. His research, which is part of the UFS 2023 Impact Report, has drawn attention to localised incidences of terrestrial and aquatic contamination linked to sewage sludge management by local wastewater treatment plants.

Using mycofiltration to reclaim the quality of contaminated water

In Qwaqwa, wastewater treatment plants, however, are not the only source of river pollution, as a significant amount of river pollutants emanates directly from the communities that often dispose of their household waste directly into the waterways. This has led to unacceptable levels of pharmaceuticals such as biphenyl-4-ylacetic acid (an anti-inflammatory), efavirenz (an HIV medicine), and carbamazepine (an epilepsy medicine) ending up in rivers.

To attempt to reclaim the quality of contaminated water, ongoing research in Prof Voua Otomo’s laboratory involves the use of ‘mycofiltration’, i.e., the use of fungal mycelia for the purpose of water filtration. This relatively untapped eco-friendly technology is attracting more attention, yet its real merits are only now being established and documented scientifically.

“Various species of fungi have been explored in bioremediation studies, and those belonging to the Pleurotus genus (edible mushrooms) have demonstrated an exceptional ability in the biosorption of contaminants,” says Prof Voua Otomo.

In his field of research, Prof Voua Otomo says snails can be used as bioindicators (i.e., organisms used to assess the health of an environment or ecosystem, particularly by indicating the presence and impact of pollutants or other environmental stressors) or biomonitors (i.e., organisms or a biological systems used to assess the health of an environment, particularly by detecting changes in the levels of pollutants or other harmful substances).

“We designed a mycofilter made of mycelia from the mushroom species Pleurotus ostreatus and filtrated water contaminated with the organic insecticide imidacloprid and the inorganic chemical iron (III). The results showed that mycofiltration could remove up to 94% of iron (III) and 31% of imidacloprid.

“Mycofiltration works through a process called adsorption, which is the process where molecules, ions, or particles from a gas, liquid, or dissolved solid, stick to a surface. This happens when the adsorbate (the substance being adsorbed) attaches to the adsorbent (the surface it adheres to),” Prof Voua Otomo explains.

Mycofiltration viable and affordable for water remediation

This research is the brainchild of Sanele Mnkandla, a final-year PhD student in Prof Voua Otomo’s laboratory. “A few years ago, she suggested looking at mycofiltration as a means to improve the quality of contaminated water. Freshwater snails were the most suitable organisms to help assess the improvement of the water quality after mycofiltration,” explains Prof Voua Otomo.

According to him, they are currently exploring ways to upscale the mycofilter to improve the quality of larger bodies of water, including rivers. The duration of the process depends on the size of the filter, the amount of water to be filtered and the targeted chemicals. Bigger filters, explains Prof Voua Otomo, will filter larger amounts of water over a relatively longer time whereas smaller ones will be saturated quickly. The process could last from minutes to days.

“We have published a technical note on the topic and a proof of concept. We are currently testing this technology using wastewater effluent in the Qwaqwa region. We are also exploring local applications in rainwater harvesting.

“Mycofiltration is certainly a viable and affordable option for water remediation, which can find a wide range of applications in South Africa,” he says. 

Watch the video below

News Archive

UFS researchers receive awards from the NSTF
2008-06-04

The recipients of the two awards are, from the left: Prof. Jan van der Westhuizen, UFS Department of Chemistry, Dr Susan Bonnet, UFS Department of Chemistry, Prof. Thinus van der Merwe, FARMOVS-PAREXEL, Prof. Maryke Labuschagne, UFS Department of Plant Sciences, and Prof. Ken Swart, FARMOVS-PAREXEL.
Photo: Lacea Loader

  

UFS researchers receive awards from the NSTF   

The University of the Free State (UFS) last week received two prestigious awards from the National Science and Technology Forum (NSTF) during its tenth gala-awards ceremony held in Kempton Park.

Prof. Maryke Labuschagne from the Department of Plant Sciences at the UFS was the female recipient of the research capacity-development award over the last ten years. She received the award for her successful mentoring of black researchers and students. The award, sponsored by Eskom, includes a prize of R100 000 which will be used for research purposes.  

A team consisting of Prof. Jan van der Westhuizen and Dr Susan Bonnet from the Department of Chemistry at the UFS and Prof. Kenneth Swart and Prof. Thinus van der Merwe from FARMOVS–PAREXEL received the innovation award for an outstanding contribution to science, engineering and technology from either an individual or a team over the last ten years.
 
Prof. Labuschagne, an expert in the field of plant breeding and food security in Africa, received the award for her contribution to the training and development of black students and researchers in this field. Various black students successfully completed their postgraduate studies under her guidance at the UFS during the past ten years, with positive results.

Research by her South African students has led to a firmly entrenched research relationship between the Agricultural Research Council (ARC) and the UFS, while research by her local and international students has culminated in no less than 82 publications over the last decade.

It has also led to the establishment of collaboration agreements with universities and research institutes in Malawi, Kenya, Uganda and Tanzania – among others with the University of Malawi where Prof. Labuschagne and her students are involved in the International Programme in the Chemical Sciences (IPICS) of the Uppsala University in Sweden. The project focuses on the study of genetics and chemistry of tropical roots and tuber crops in Malawi. This has led to collaboration with international research organisations and has generated overseas funding.

The combined team from FARMOVS–PAREXEL and the UFS won an award for the synthesis of drug analogues used as reference products during the analysis of the drug concentration in blood, from existing and new drugs registered nationally and internationally.

The project resulted in capacity building in synthetic organic chemistry, mass spectrometry and chromatography: Five master’s degrees were completed, seven are in progress, and six postgraduate students commenced with Ph.D.’s.

The skills transferred during this project are already being applied to examine the properties of indigenous medicinal plants as part of the recently established UFS novel drugs and bioactive compound cluster.

Applied Biosystems, the Canadian manufacturer of mass spectrometers, donated equipment to the value of more than R10 million for this project. As a result the UFS is one of the few universities in the world that can offer postgraduate training in bioanalytical chemistry.

Prof. Hendrik Swart, head of the Department of Physics at the UFS, and Dr Martin Ntwaeaborwa, senior lecturer at the Department of Physics were finalist in the research- capacity developer and black-researcher categories respectively.
The NSTF awards gives recognition to the outstanding contributions of individuals and groups to science, engineering and technology. This includes all practising scientists, engineers and technologists across the system of innovation, including, for example, teachers and students in mathematics, science and technology. The NSTF represents government, science councils, professional bodies, higher education, business and civil society.

Altogether nine individuals and three organisations were presented with the NSTF Awards trophy by the Minister of Science and Technology, Mr Mosibudi Mangena.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel:  051 401 2584
Cell:  083 645 2454
E-mail:  loaderl.stg@ufs.ac.za
4 June 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept