Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 August 2024 | Story André Damons | Photo Supplied
Prof Patricks Voua Otomo
Prof Patricks Voua Otomo, Associate Professor and subject head of Department of Zoology and Entomology at the University of the Free State (UFS).

In an effort to alleviate the burden of water contamination, Prof Patricks Voua Otomo, Associate Professor in the Department of Zoology and Entomology at the University of the Free (UFS) is researching how mushrooms can be used to significantly reduce the toxicity of water.

The degradation of river systems in South Africa has been linked primarily to the inability of municipalities to properly treat wastewater. According to the 2022 Green Drop Report, out of the existing 850 wastewater systems across 90 municipalities, only 23 (or less than 3%) qualified for the Green Drop Certification. This underscores the depth and breadth of the wastewater treatment crisis in South Africa and its potential implications for human and environmental health.

In 2030, billions of people will still lack access to safe water, sanitation and hygiene services – the most basic human need for health and well-being. Target 6.1 of the United Nations (UN) Sustainable Development Goals (SDGs) – SDG 6 – aims to achieve universal and equitable access to safe and affordable drinking water for all, while target 6.3 is also looking to improve water quality by reducing pollution, eliminating dumping and minimising release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe re-use globally by 2030.

These challenges inform Prof Voua Otomo’s research, which focuses on the drivers of river pollution in the Qwaqwa region, ways to mitigate/remediate their effects, and the development of simple and quick methods to assess water quality. His research, which is part of the UFS 2023 Impact Report, has drawn attention to localised incidences of terrestrial and aquatic contamination linked to sewage sludge management by local wastewater treatment plants.

Using mycofiltration to reclaim the quality of contaminated water

In Qwaqwa, wastewater treatment plants, however, are not the only source of river pollution, as a significant amount of river pollutants emanates directly from the communities that often dispose of their household waste directly into the waterways. This has led to unacceptable levels of pharmaceuticals such as biphenyl-4-ylacetic acid (an anti-inflammatory), efavirenz (an HIV medicine), and carbamazepine (an epilepsy medicine) ending up in rivers.

To attempt to reclaim the quality of contaminated water, ongoing research in Prof Voua Otomo’s laboratory involves the use of ‘mycofiltration’, i.e., the use of fungal mycelia for the purpose of water filtration. This relatively untapped eco-friendly technology is attracting more attention, yet its real merits are only now being established and documented scientifically.

“Various species of fungi have been explored in bioremediation studies, and those belonging to the Pleurotus genus (edible mushrooms) have demonstrated an exceptional ability in the biosorption of contaminants,” says Prof Voua Otomo.

In his field of research, Prof Voua Otomo says snails can be used as bioindicators (i.e., organisms used to assess the health of an environment or ecosystem, particularly by indicating the presence and impact of pollutants or other environmental stressors) or biomonitors (i.e., organisms or a biological systems used to assess the health of an environment, particularly by detecting changes in the levels of pollutants or other harmful substances).

“We designed a mycofilter made of mycelia from the mushroom species Pleurotus ostreatus and filtrated water contaminated with the organic insecticide imidacloprid and the inorganic chemical iron (III). The results showed that mycofiltration could remove up to 94% of iron (III) and 31% of imidacloprid.

“Mycofiltration works through a process called adsorption, which is the process where molecules, ions, or particles from a gas, liquid, or dissolved solid, stick to a surface. This happens when the adsorbate (the substance being adsorbed) attaches to the adsorbent (the surface it adheres to),” Prof Voua Otomo explains.

Mycofiltration viable and affordable for water remediation

This research is the brainchild of Sanele Mnkandla, a final-year PhD student in Prof Voua Otomo’s laboratory. “A few years ago, she suggested looking at mycofiltration as a means to improve the quality of contaminated water. Freshwater snails were the most suitable organisms to help assess the improvement of the water quality after mycofiltration,” explains Prof Voua Otomo.

According to him, they are currently exploring ways to upscale the mycofilter to improve the quality of larger bodies of water, including rivers. The duration of the process depends on the size of the filter, the amount of water to be filtered and the targeted chemicals. Bigger filters, explains Prof Voua Otomo, will filter larger amounts of water over a relatively longer time whereas smaller ones will be saturated quickly. The process could last from minutes to days.

“We have published a technical note on the topic and a proof of concept. We are currently testing this technology using wastewater effluent in the Qwaqwa region. We are also exploring local applications in rainwater harvesting.

“Mycofiltration is certainly a viable and affordable option for water remediation, which can find a wide range of applications in South Africa,” he says. 

Watch the video below

News Archive

Research project gives insight into the world of the deaf
2005-11-30

Mr Akach in conversation (using sign language) with his assistant Ms Emily Matabane. Photo: Lacea Loader

UFS research project gives insight into the world of the deaf

The Sign Language Division of the University of the Free State’s (UFS) Department of Afro-Asiatic Studies and Language Practice and Sign Language has signed a bilateral research project with the universities of Ghent and Brussels to write a book on sign language. 

“We want to compare the Belgium and South African sign languages with each other.  The book will be about the deaf telling us about themselves and how they live.  It will also focus on the use of story telling techniques and the grammar used by deaf people.  We want to see if the hand forms and the grammatical markers and other linguistic features that deaf people from these two countries use are the same or not,” said Mr Philemon Akach, lecturer at the UFS Sign Language Division and coordinator of the research.  

According to Mr Akach, the sign language community in South Africa, with about 600 000 deaf people who use South African Sign Language (SASL) as first language, is quite big.  “Over and above the deaf people in South Africa, there are also the non-deaf who use SASL, like the children of deaf parents etc.  This book can therefore be used to teach people about the deaf culture,” he added.

Another of Mr Akach’s achievements is his election as Vice-President of the newly established World Association of Sign Language Interpreters (WASLI).  The association was established earlier this month during a conference in Worcester.

Mr Akach has been actively involved with sign language interpretation since 1986 and has been interpreting at the World Congress of the World Federation of the Deaf (WFD) since 1987.  “My appointment as Vice-President of the WASLI is an emotional one.  I have been involved with deaf people for so long and have been trying to create awareness and obtain recognition for sign language, especially in Africa,” said Mr Akach.  WASLI is affiliated to the WFD.

According to Mr Akach there was no formal structure in the world to support sign language and sign language interpreters.   “Now we have the backup of WASLI and we can convince governments in other African countries and across the world to support deaf people by supporting WASLI and therefore narrow the communication gap between the deaf and the hearing.  My main aim as Vice-President is to endeavour for the recognition of sign language and spoken language interpreters as a profession by governments,” he said. 

According to Mr Akach the formal training of interpreters is of vital importance.  “Anybody who has a deaf person in his/her family and can communicate in sign language can claim that they are an interpreter.  This is not true.  It is tantamount to think that all mother tongue or first language speakers are interpreters.  Likewise students who learn sign language up to whatever level and are fluent in signing, should still join an interpreter’s programme,” he said.

“Sign language interpreting is a profession and should be presented as an academic course alongside other spoken languages.  The UFS has been taking the lead with sign language and spoken language interpretation and was the first university on the African continent to introduce sign language as an academic course,” he said.

“Although sign language has always been an unknown language to young people it has become quite popular in recent years.  This year we had a total of 160 students at the Sign Language Section of the UFS and the numbers seem to increase steadily every year,” he said.

Mr Akach’s assistant, Ms Emily Matabane, is deaf and they communicate in sign language.  Ms Matabane also handles the tutorials with students to give them hands-on experience on how to use sign language.  


Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
30 November 2005

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept