Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

Agriculture must adapt to change
2008-11-28

 

At the launch of "50 years of agriculture" at the UFS were, from the left: Mr Corwyn Botha: Chairman: Agri Business Chamber and Managing Director: Cape Agri Group, Mr Motsepe Matlala, President of NAFU, Mr Hans van der Merwe, Executive Head: Agri SA, Prof. Herman van Schalkwyk: Dean: Faculty of Natural and Agricultural Sciences at the UFS, and Mr Sugar Ramakarane, Head: Department of Agriculture, Free State Province.
Photo: Lacea Loader

 “The biggest factor driving agriculture today is change. Our major challenge is to adapt to this changing environment.” This was stated by Prof. Herman van Schalkwyk, Dean of the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) during the recent celebration of the faculty’s “50 years in agriculture”.

Prof. Van Schalkwyk stated that the most important changes include power relationships in supply chains, consumer demand, new products and technology in agriculture, government action and developments in neighbouring states. “At the moment there is very little cooperation between small-scale farmers, small-scale farmers and commercial farmers and farmers and processors. There are also low levels of processing, low levels of value adding and a lack of creative thinking in agriculture," he said.

“This must change – we need comprehensive agricultural support and new business ideas in agriculture. We need better infrastructure, value chain financing and improved institutional support,” he said.

Speaking about agriculture and institutional co-operation in the Free State, Mr Sugar Ramakarane, Chief Director of the Free State Department of Agriculture, said that the UFS plays a vital role in bringing together organised agriculture in the province. “The responsibility of transforming our economy cannot be done by government alone. We need partners like the UFS to assist us with bringing together the two most important stakeholders of the agricultural sector, namely the National Farmers’ Union (NAFU) and Free State Agriculture. You can assist us with harnessing co-operation and providing practical solutions," he said

Mr Ramakarane said that his department is aware of the university’s good work with emerging farmers. “But, I want to encourage the university to help us with skills transfer and the development of the emerging farmers. You can play a vital role in developing a mentorship programme. Yours remains a central and critical role of being torch bearers in guiding the transformation agenda of our country," he said.

In his contribution on the challenges of small scale farmers in South Africa and the role of the university, Mr Motsepe Matlala, President of NAFU, said that unity in organised agriculture and working together with other stakeholders has become even more crucial with regard to the global challenges now faced by the country. “The university should take the lead in guiding all farmers on how to respond to, among others, the global financial turmoil and politics, developments in trade negotiations, food prices, input costs and the availability of energy," he said.

“If the UFS, and more specifically the Faculty of Natural and Agricultural Sciences, is to continue to play a leading role in academia as well as in the production of research that matters to the growth and development of this country, it must adopt an approach that seeks to harness the capacity of everyone in an inclusive manner. The strides already made in this regard must be applauded,” Mr Matlala said.

Speaking on the future challenges in agriculture and the role of universities, Mr Hans van der Merwe, Executive Head of Agri SA said that South Africa has not spent money on agricultural development in a long time. “We must increase our product capacity in the agricultural sector. Universities must focus on cultivating enough expertise and the skills necessary to manage the resources and capacity needed," he said. In his view, South Africa must also focus on technological advancement in agriculture as this has also been neglected in the past. He urged universities to provide best-practice education and to look at international trends in agricultural training. “That is why we should not only focus our attention on South Africa, but on southern Africa,” Mr van der Merwe said.

In conclusion to the day’s programme, Mr Corwyn Botha, Chairperson of the Agricultural Business Chamber, Managing Director of the Cape Agri Group and former Kovsie stated that: “If you want to be an example of leadership, people around you must do better because you are there. A university should evaluate itself in this context. You cannot create solutions to problems with the same attitude in which the problems were created."

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
28 November 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept