Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

UFS policies want to help all students
2005-03-09

The death of Hannes van Rensburg, a first-year student from the JBM Hertzog residence, this past weekend, placed various aspects of student life in the spotlight.  Dr Natie Luyt, Dean:  Student Affairs at the University of the Free State (UFS), and the Student Representative Council (SRC) of the UFS explain which policies are in place to counter these practices.

At all tertiary institutions there are rules and policies to guide students and provide direction for certain behaviour and practices.  The same applies to the University of the Free State (UFS).

“At the beginning of the year the UFS provides every residence committee with a manual to establish a framework for meaningful and orderly relations within and among residences on the campus,” said Dr Natie Luyt.

However, it is one thing to set rules, but it is an impossible task to enforce all aspects thereof.  Policies currently in place include an alcohol policy, a policy on the induction of first years and a policy on banned practices in residence orientation. 

“The alcohol policy was compiled in cooperation with students and their input was constantly asked,” said Dr Luyt.  We also liaise on a continuous basis with residences and senior students to encourage the responsible use of alcohol, especially around activities like intervarsities and Rag. 

In the policy, recognition is given to the right and voluntary and informed choice of every individual to use alcohol on the UFS campus in a responsible way. 

Guidelines for the use of alcohol on campus include among others the following: 

Only authorised points of sale will be permitted on campus.  In this case it is the various league halls in most of the male residences on campus.

Alcohol will only be made available during fixed times and is not permitted in residence rooms.    

All alcohol-related functions are regulated and an application for a temporary alcohol license must be obtained from the Dean:  Student Affairs.     

The UFS obtained a liquor license in March 2004 which must be administered by senior leagues in various residences on campus.   Normal liquor license conditions and the county’s liquor laws apply.  Liquor can only be sold to members of the senior league (or special guests) and also to persons over the age of 18 years.  Liquor may not be used in public (outside the senior league) or on campus.    

The senior leagues may only be open three nights per week and within prescribed times.  No liquor could be used in any other place than the senior league halls.  Senior leagues could buy liquor from club monies generated by themselves. 

The right of senior leagues to serve liquor was suspended by the Rector and Vice-Chancellor the UFS, Prof Frederick Fourie, on Monday 7 March 2005 – pending an investigation of the recent events on campus. 

The policy on banned practices include among others that no swearing and shouting at first-years may take place, no first-year student may be targeted individually, no senior may enter the room of a first-year student without an invitation or permission from that first-year student and no senior under the influence of alcohol may have contact with first-year students. 

The induction of first-year students takes place by means of three functions, namely an information function (the introduction to the various facets and possibilities of the university system), an induction function (the first-year student becomes involved in various campus and residence activities) and a development function (the first-year student is motivated to take charge of his development potential). 

No first-year induction activity may commence before the residence committee’s contracting with the senior students is not completed.  This meeting is attended by the residence head and all senior students.  The induction policy, residence induction policy of first-year students and first-year rules are discussed.

The senior students sign an attendance list to show that he/she was informed about the policies.  A senior who does not sign, may not be involved with any induction session with first-year students.  

No physical contact is allowed during the conclusion of the first-year students’ official induction period.  The induction of first-year students as full members of the residence is a prestige event, presented by the residence committee.  No physical or degrading activities may take place. 

The Dean:  Student Affairs also has a daily meeting with the primarii of all the residences during the induction period.  This helps to monitor the situation and counter any problem behaviour or tendencies.

“Enforced behaviour – where a senior student forces a first-year student to do something against his/her own free wil – is not allowed.  Where there is any sign of this, it is met wortel en tak uitgeroei,” said Dr Luyt.

“In any group of people – whether it is a group of students or people at a workplace – there will always be those who will break the rules or those who would like to see how far they could push it.

The SRC, the UFS management and myself are and will stay committed to make each student’s life on this campus a school of learning and an experience which would be remembered for ever,” said Dr Luyt.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept