Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

In January 1, 2003, the Qwa-Qwa campus of the University of the North (Unin) was incorporated into the University of the Free State (UFS).
2003-02-07


FREDERICK FOURIE

IN January 1, 2003, the Qwa-Qwa campus of the University of the North (Unin) was incorporated into the University of the Free State (UFS).

While this is merely the beginning of a long and complex process, it does represent a major milestone in overcoming the apartheid legacy in education, realising the anti-apartheid goal of a single non-racial university serving the Free State.

The incorporation is also part of the minister's broader restructuring of the higher education landscape in South Africa - a process which aims to reshape the ideologically driven legacy of the past.

In contrast to the past educational and social engineering that took place, the current process of incorporating the Qwa-Qwa campus of Unin into the UFS is informed by three fundamentally progressive policy objectives, clearly outlined in the education white paper 3: (A framework for the transformation of higher education):

To meet the demands of social justice to address the social and structural inequalities that characterise higher education.

To address the challenges of globalisation, in particular the role of knowledge and information processing in driving social and economic development.

To ensure that limited resources are effectively and efficiently utilised, given the competing and equally pressing priorities in other social sectors.

Besides informing the way the UFS is managing the current incorporation, these policy objectives have also informed the transformation of the UFS as an institution over the past five years.

In 2001, former president Nelson Mandela lauded the success of the UFS in managing this transformation, by describing the campus as a model of multiculturalism and multilingualism. This was at his acceptance of an honorary doctorate from the UFS.

Indeed our vision for the Qwa-Qwa campus as a branch of the UFS is exactly the same as it is for the main UFS campus - a model of transformation, academic excellence, community engagement and financial sustainability, building on the histories and strengths of both the Qwa-Qwa campus and the UFS (Bloemfontein campus).

Realising this vision will be a giant leap forward in establishing a unified higher education landscape in the Free State.

In more concrete terms, the UFS is working towards this vision by focusing on the following areas of intervention: access and equity; academic renewal; investment in facilities; and sound financial management.

These interventions are being made not to preserve any vestiges of privilege or superiority, but precisely to increase access for students from poor backgrounds and to promote equity and representivity among all staff.

The current growth phase of the UFS has seen student enrolment almost double over the past five years, in particular black students, who now constitute approximately 55 percent of the student population of nearly 18 000 (including off-campus and online students).

But it has not just been a numbers game. Our approach has been to ensure access with success.

Our admissions policy, coupled with the academic support and "career preparation" programmes we offer, have resulted in significant successes for students who otherwise would not have been allowed to study at a university.

This will be continued at Qwa-Qwa as well.

Our academic offerings too have undergone dramatic change. We have become the first university in the country to offer a degree programme based on the recognition of prior learning (RPL).

This is not just a matter of academic renewal but of access as well, especially for working adults in our country who were previously denied a university education.

As for the sound financial management of the UFS (including the Qwa-Qwa campus), this is being done not for the sake of saving a few rands and cents, but for the greater value to our society that comes from having sustainable institutions.

It is sustainable universities that can make long-term investments to fund employment equity, provide information technology for students, upgrade laboratories, construct new buildings, develop research capacity, and provide a safe environment for students and staff, as is happening now at the UFS.

As a result of such management, a practical benefit for prospective students at the Qwa-Qwa campus of the UFS will be lower academic fees in some cases compared with the Unin fees.

As is the case with all these processes, there are concerns from staff and students at Qwa-Qwa and the broader community of the region that the Qwa-Qwa campus serves.

To get the campus viable and to ensure its continuation in the short term, tough choices had to be made by the minister of education regarding which programmes to offer and fund.

But we have been encouraged by the community's understanding that these concerns can be addresed over time as the campus becomes financially viable.

Meetings between the top mangement of the UFS and community representatives, staff and students at Qwa-Qwa have laid the basis for building a climate of trust in such a complex process.

We should not be captives of the past divisions but build this new unified higher education landscape that can meet our country's developmental needs.

It should be a higher education landscape that is based on broadening access, promoting equity and social justice, developing academic excellence, and the effective and efficient management of scarce resources. This should be our common common objective.

Professor Frederick Fourie the rector and vice-chancellor of the University of the Free State (UFS)

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept