Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

Heart diseases a time bomb in Africa, says UFS expert
2010-05-17

 Prof. Francis Smit

There are a lot of cardiac problems in Africa. Sub-Saharan Africa is home to the largest population of rheumatic heart disease patients in the world and therefore hosts the largest rheumatic heart valve population in the world. They are more than one million, compared to 33 000 in the whole of the industrialised world, says Prof. Francis Smit, Head of the Department of Cardiothoracic Surgery at the Faculty of Health Sciences at the University of the Free State (UFS).

He delivered an inaugural lecture on the topic Cardiothoracic Surgery: Complex simplicity, or simple complexity?

“We are also sitting on a time bomb of ischemic heart disease with the WHO (World Health Organisation) estimating that CAD (coronary artery disease) will become the number-one killer in our region by 2020. HIV/Aids is expected to go down to number 7.”

Very little is done about it. There is neither a clear nor coordinated programme to address this expected epidemic and CAD is regarded as an expensive disease, confined to Caucasians in the industrialised world. “We are ignoring alarming statistics about incidences of adult obesity, diabetes and endemic hypertension in our black population and a rising incidence of coronary artery interventions and incidents in our indigenous population,” Prof. Smit says.

Outside South Africa – with 44 units – very few units (about seven) perform low volumes of basic cardiac surgery. The South African units at all academic institutions are under severe threat and about 70% of cardiac procedures are performed in the private sector.

He says the main challenge in Africa has become sustainability, which needs to be addressed through education. Cardiothoracic surgery must become part of everyday surgery in Africa through alternative education programmes. That will make this specialty relevant at all levels of healthcare and it must be involved in resource allocation to medicine in general and cardiothoracic surgery specifically.

The African surgeon should make the maximum impact at the lowest possible cost to as many people in a society as possible. “Our training in fields like intensive care and insight into pulmonology, gastroenterology and cardiology give us the possibility of expanding our roles in African medicine. We must also remember that we are trained physicians as well.

“Should people die or suffer tremendously while we can train a group of surgical specialists or retraining general surgeons to expand our impact on cardiothoracic disease in Africa using available technology maybe more creatively? We have made great progress in establishing an African School for Cardiothoracic Surgery.”

Prof. Smit also highlighted the role of the annual Hannes Meyer National Registrar Symposium that culminated in having an eight-strong international panel sponsored by the ICC of EACTS to present a scientific course as well as advanced surgical techniques in conjunction with the Hannes Meyer Symposium in 2010.

Prof. Smit says South Africa is fast becoming the driving force in cardiothoracic surgery in Africa. South Africa is the only country that has the knowledge, technology and skills base to act as the springboard for the development of cardiothoracic surgery in Africa.

South Africa, however, is experiencing its own problems. Mortality has doubled in the years from 1997 to 2005 and half the population in the Free State dies between 40 to 44 years of age.

“If we do not need health professionals to determine the quality and quantity of service delivery to the population and do not want to involve them in this process, we can get rid of them, but then the political leaders making that decision must accept responsibility for the clinical outcomes and life expectancies of their fellow citizens.

“We surely cannot expect to impose the same medical legal principles on professionals working in unsafe hospitals and who have complained and made authorities aware of these conditions than upon those working in functional institutions. Either fixes the institutions or indemnifies medical personnel working in these conditions and defends the decision publicly.

“Why do I have to choose the three out of four patients that cannot have a lifesaving operation and will have to die on their own while the system pretends to deliver treatment to all?”

Prof. Smit says developing a service package with guidelines in the public domain will go a long way towards addressing this issue. It is also about time that we have to admit that things are simply not the same. Standards are deteriorating and training outcomes are or will be affected.

The people who make decisions that affect healthcare service delivery and outcomes, the quality of training platforms and research, in a word, the future of South African medicine, firstly need rules and boundaries. He also suggested that maybe the government should develop health policy in the public domain and then outsource healthcare delivery to people who can actually deliver including thousands of experts employed but ignored by the State at present.

“It is time that we all have to accept our responsibilities at all levels… and act decisively on matters that will determine the quality and quantity of medical care for this and future generations in South Africa and Africa. Time is running out,” Prof. Smit says.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept