Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

Higher than expected prevalence of dementia in South African urban black population
2010-09-22

 Prof. Malan Heyns and Mr Rikus van der Poel

Pilot research done by University of the Free State (UFS) indicates that the prevalence of dementia, of which Alzheimer’s disease is only one of the causes, is considerably higher than initially estimated. Clinical tests are now underway to confirm these preliminary findings.

To date it has been incorrectly assumed that dementia is less prevalent among urban black communities. This assumption is strongly disputed by the findings of the current study, which indicates a preliminary prevalence rate of approximately 6% for adults aged 65 years and older in this population group. Previous estimates for Southern Africa have been set at around 2,1%.

The research by the Unit for Professional Training and Services in the Behavioural Sciences (UNIBS) at the UFS and Alzheimer’s South Africa is part of the International 10/66 Dementia Research Group’s (10/66 DRG) initiative to establish the prevalence of dementia worldwide.

Mr Rikus van der Poel, coordinator of the local study, and Prof. Malan Heyns, Principal Investigator, say worldwide 66% of people with dementia live in low and middle income countries. It is expected that it will rise to more than 70% by 2040, and the socio-economic impact of dementia will increase accordingly within this period. 21 September marks World Alzheimer’s Day, and this year the focus is on the global economic impact of dementia. Currently, the world wide cost of dementia exceeds 1% of the total global GDP. If the global cost associated with dementia care was a company, it would be larger than Exxon-Mobil or Wal-Mart.

The researchers also say that of great concern is the fact that South Africa’s public healthcare system is essentially geared toward addressing primary healthcare needs, such as HIV/Aids and tuberculosis. The adult prevalence rate of HIV was 18,1% in 2007. According to UNAIDS figures more than 5,7 million people in South Africa are living with HIV/Aids, with an estimated annual mortality of 300 000. In many instances the deceased are young parents, with the result that the burden of childcare falls back on the elderly, and in many cases elderly grandparents suffering from dementia are left without children to take care of them. “These are but a few reasons that highlight the need for advocacy and awareness regarding dementia and care giving in a growing and increasingly urbanized population,” they say.

Low and middle income countries often lack epidemiological data to provide representative estimates of the regional prevalence of dementia. In general, epidemiological studies are challenging and expensive, especially in multi-cultural environments where the application of research protocols relies heavily on accurate language translations and successfully negotiated community access. Despite these challenges, the local researchers are keen to support advocacy and have joined the international effort to establish the prevalence of dementia through the 10/66 DRG.

The 10/66 DRG is a collective of researchers carrying out population-based research into dementia, non-communicable diseases and ageing in low and middle income countries. 10/66 refers to the two-thirds (66%) of people with dementia living in low and middle income countries, and the 10% or less of population-based research that has been carried out in those regions.

Since its inception in 1998, the 10/66 DRG has conducted population based surveys in 14 catchment areas in ten low and middle income countries, with a specific focus on the prevalence and impact of dementia. South Africa is one of seven LAMICs (low and medium income countries) where new studies have been conducted recently, the others being Puerto Rico, Peru, Mexico, Argentina, China and India.

Mr Van der Poel says participating researchers endeavour to conduct cross-sectional, comprehensive, one-phase surveys of all residents aged 65 and older within a geographically defined area. All centres share the same core minimum dataset with cross-culturally validated assessments (dementia diagnosis and subtypes, mental disorders, physical health, anthropometry, demographics, extensive non-communicable risk factor questionnaires, disability/functioning, health service utilization and caregiver strain).

The local pilot study, funded by Alzheimer’s South Africa, was rolled out through an existing community partnership, the Mangaung University of the Free State Community Partnership Programme (MUCPP).

According to Mr Van der Poel and Prof. Heyns, valuable insights have been gained into the myriad factors at play in establishing an epidemiological research project. The local community has responded positively and the pilot phase in and of itself has managed to promote awareness of the condition. The study has also managed to identify traditional and culture-specific views of dementia and dementia care. In addition, existing community-based networks are being strengthened, since part of the protocol will include the training and development of family caregivers within the local community in Mangaung.

“Like most developing economies, the South African population will experience continued urbanization during the next two decades, along with increased life expectancy. Community-based and residential care facilities for dementia are few and far between and government spending will in all probability continue to address the high demands associated with primary healthcare needs. These are only some of the reasons why epidemiological and related research is an important tool for assisting lobbyists, advocates and policymakers in promoting better care for those affected by dementia.”

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
21 September 2010

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept