Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

Dr Khotso Mokhele joins ranks of distinguished Chancellors
2010-11-21

Attending the inauguration ceremony are, from the left: Mr Pule Makgoe, MEC for Education in the Free State and member of the UFS Council; Judge Ian van der Merwe, Chairperson of the UFS Council; Dr Khotso Mokhele, newly inaugurated Chancellor of the UFS; and Prof. Jonathan Jansen, Vice-Chancellor and Rector of the UFS.
Photo: Dries Myburgh

Dr Khotso Mokhele joined the ranks of distinguished Chancellors of the University of the Free State (UFS) with his inauguration as the new Chancellor of the institution at a ceremony on Friday, 19 November 2010.

The lustrous ceremony took place on the Main Campus in Bloemfontein and was attended by hundreds of guests from all over South Africa.

Dr Mokhele said in his speech: “I am excited to have been invited by the UFS to join its community at the time when it is attempting to reinvent itself into an institution that will be counted amongst those that will shape the local, regional, national will, and by so doing, contribute to the shaping of an African will.”

Dr Mokhele follows in the footsteps of Dr Franklin Sonn, former Ambassador of South Africa in the United States of America and receiver of many awards, acknowledgements, and honorary doctorates, who retired earlier this year. Dr Sonn was preceded by Ms Winkie Direko, former premier of the Free State.

His acceptance of the role of Chancellor is a great honour for the UFS.

According to Prof. Jonathan Jansen, Vice-Chancellor and Rector of the UFS, it is a proud moment to welcome someone from the Province as the Chancellor of this university. With his strong academic values and deep sense of human compassion, Dr Mokhele is one of but a few uncompromising leaders. He is also an inspiring, determined pioneer and a role model to all our students.

Few have done as much to guide the development of science in South Africa since democracy in 1994 as Dr Mokhele. His vision and actions as a senior science manager have been guided by his deep conviction that for a truly democratic society to emerge in South Africa all people must be empowered to be its architects and must have unhindered access to those careers upon which our economy is built.

Dr Khotso Mokhele was born and raised in Bloemfontein. After matriculating from the Moroka High School he went on to study at Fort Hare, where he graduated with a B.Sc. in Agriculture, winning the Massey-Ferguson award for the best student in that field. As a recipient of the prestigious Fulbright-Hays Scholarship, he entered the University of California in Davis where he took a M.Sc. and a Ph.D. degree, both in Microbiology. He was awarded post-doctoral fellowships at the Johns Hopkins University School of Medicine in Baltimore, Maryland, and at the University of Pennsylvania, Philadelphia.

Dr Mokhele returned to South Africa in 1987, set on becoming a top-class academic and researcher. He held lecturing posts at the Universities of Fort Hare (1987-1989) and Cape Town (1990-1992). In 1992 he joined the Foundation for Research Development (FRD) as one of its Vice-Presidents. He succeeded to its presidency in 1996 and then from 1999 to 2006 became the first President of the National Research Foundation (NRF).  He successfully merged the FRD and the Centre for Science Development of the Human Sciences Research Council. Under his visionary leadership the NRF has come to play a pivotal role in the development agenda of the country. He was also instrumental in the establishment of the South African Academy of Sciences serving as its founder president (1996-1998).

Dr Khotso Mokhele's contribution to science in South Africa has received wide recognition locally and abroad. He has received nine honorary doctorates. He was made a Chevalier of the Legion of Honour by the President of France in recognition of his personal efforts in strengthening scientific ties between France and South Africa, and was appointed a director of the Salzburg Seminar, an institution focused on global change, and subsequently a member of its Council of Senior Fellows.

He also serves on the boards of major companies such as Implats, Adcock Ingram and Afrox.

Media Release
Issued by: Lacea Loader
Director: Strategic Communication (actg)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za19 November 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept