Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

Living proof of transformation
2012-07-20

 Prof. Pumla Gobodo-Madikizela (middle) facilitated a dialogue with Archbishop Emeritus Desmond Tutu and Prof. Mark Solms on the Transformation in the Solms-Delta Wine Estate.
Photo: Johan Roux

18 July 2012

“We have the capacity to make a success of South Africa. We have incredible people who refuse to leave the country and want to make a difference.” This is according to Archbishop Emeritus Desmond Tutu who was speaking at the University of the Free State (UFS) today.

Dr Tutu took part in a dialogue with Prof. Mark Solms, owner of the Solms-Delta wine estate in Franschhoek.Prof. Solms is also an A-rated scholar and the Head of the Department of Psychology at the University of Cape Town.The theme of the dialogue was “Living Reconciliation: Winds of Change in Franschhoek and Transformation at Solms-Delta Wine Estate”.

Prof. Solms led an initiative to transform the lives of farm workers on the estate through the Wijn-de Caab Trust. This initiative was extended to empower the wider community of farm dwellers when Prof. Solms co-founded the Delta Trust and the Franschhoek Valley Transformation Charter.

The dialogue was the second in the Dialogue between Science and Society series and was facilitated by Prof. Pumla Gobodo-Madikizela, Senior research professor on Trauma, Forgiveness and Reconciliation at the UFS. The Dialogue series aims to inspire new ways of thinking about responsible citizenship. It also highlights the unique and important ways of engaging with the critical issues of social equality, social justice, social transformation and reconciliation in South Africa.This morning Dr Tutu said the work done in the Franschhoek community is proof that people cannot prosper alone if others are also not prospering. “We belong together. Why did it take us so long to realise it? South Africans have the capacity to make South Africa a better place. It is unacceptable that people go hungry and go to school under trees. It is unacceptable that they still have no books in the third term, and that the pass rate is 30%.

“Is this why we struggled, why people died? We want to go to our graves smiling… we will not be allowed peace and stability if we do not attend to the problems.”

Prof. Solms said the miracle of the political transformation did not trickle down to the people. A lot has been done, but much more needs to be done. “It can only be done by us. It is not the government’s responsibility. The way we live as a result of apartheid is that we are a deeply divided society. We must recognise this and do something to change it.”

He encouraged people to think “small”. An individual cannot change the whole country, but the changes in his community are there to see.

Dr Tutu also congratulated the UFS on becoming a truly South African university, recognising the transformation of the past few years.

The dialogue was presented at the Global Leadership Summit that 250 students and academic leaders from 21 international universities are participating in. The summit runs until Friday 20 July 2012.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept