Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

Important message to UFS students on NSFAS and financial aid in general
2013-02-01

31 January 2013

Dear Students

There remains some uncertainty as well as misinformation within the student body concerning NSFAS and financial aid in general. This communication is intended to provide the facts on the state of student funding at the University of the Free State (UFS). I hope you find this information helpful and that it would guide you in your decisions as you wait to hear from, or hopefully receive funding from NSFAS or any other source.

  1. Every year the Department of Higher Education and Training (DHET) determines how much funding is available to fund students at all universities in South Africa; this is determined in part by the student numbers. Universities do not ask for, or determine the DHET allocation and are instructed by government that “NSFAS will ensure that the universities comply with the processes, procedures…for the allocated funds.”

  2. On 14 December 2012 the UFS received notice from the DHET that our total allocation would be R108,331,215.66 and that this amount must be apportioned in the following categories:
    General NSFAS Funding R85,174,275.07
    Teacher Training R2,291,940.59
    Disability Funding R1,265,000.00
    Final-Year Programme R19,600,000.00

  3. The UFS received 5 952 applications for NSFAS funding and with the available funding we can only finance up to 3 000 students on the Qwaqwa and Bloemfontein Campuses, provided that those students satisfy the stringent criteria, e.g. the so-called “national means test” determined for all universities in the country. If we funded more students that the available monies allow, the university would be held accountable by the NSFAS Board and the DHET and this would threaten future funding.

  4. Students apply in the previous year and therefore late applications are less likely to receive funding.

  5. Academic merit also counts, therefore students who fail one or more modules are less likely to receive new or ongoing support from NSFAS. The combination of academic standing and financial need are among the important criteria in decision-making on NSFAS funds.

  6. The UFS is one of the few universities with a very efficient record in using every cent made available to support poor students; we are proud of this record. No money is sent back to NSFAS, except small amounts not claimed by students in the disability category. The university is not allowed to shift funds between categories as described in point #2 above.

  7. Allocations are not based on campus, but need.

  8. The UFS sets aside an additional R35,7 million (in 2013) from within its own budget as bursaries so that we can accommodate as many students as possible. We spend every cent of this funding on students.

  9. The UFS also raises millions in bursaries from the private sector to support poor and promising students, though these funds are often linked to the industry granting the money, e.g. Investec for Accounting students and SASOL for Chemistry students. This recruitment of bursaries is a 24/7 commitment of the Marketing Office and the Faculties and Heads of Departments are also active in raising funds from government agencies, parastatals and the private sector for students in their units.

  10. After almost all our 2013 funds were allocated in favour of students, we calculated a shortfall in the NSFAS allocation of approximately R51 million. We are in the process of making an urgent submission to NSFAS to consider this additional allocation, but we cannot guarantee that this plea can or will be met.

Finally, I want all our students to know that the University of the Free State works very hard to raise every cent we can to provide poor students with funding for their studies. Many of my colleagues, including support staff, who do not earn very much, use some of their meagre personal resources to help a student with money for registration or clothing or food. In fact, the No Student Hungry Campaign that raises more than R600,000 by UFS volunteers annually, is another mechanism for trying to assist students who might have money for studies, but not much else.

We do this because we care, and because this is what The Human Project at Kovsies is all about.

I therefore ask for your patience as we continue our labour of raising the funds that enable every deserving student to continue their studies at the University of the Free State.

Should you have any further questions about NSFAS, please leave an email inquiry on choanet@ufs.ac.za or mallettca@ufs.ac.za and we will endeavour to provide you with the information you require.

Sincerely Yours

Jonathan D Jansen
Vice-Chancellor and Rector
University of the Free State

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept