Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

New challenges for animal science discussed
2006-04-04

Some of the guests attending the congress were from the left Dr Heinz Meissner (honorary president of the South African Society for Animal Science (SASAS) and senior manager at the Animal Production Institute of the Agricultural Research Council), Mr Paul Bevan (President of SASAS) and Prof Magda Fourie (Vice-Rector:  Academic Planning at the UFS).
Photo: Lacea Loader

New challenges for animal science discussed  

The South African Society for Animal Science (SASAS) is presenting its 41st Congress at the University of the Free State’s (UFS) Main Campus in Bloemfontein. 

The congress started yesterday and will run until Thursday 6 April 2006.  The theme is New challenges for the animal science industries.

It is one of the largest congresses in the 45 years since SASAS was founded in 1961.  Among the delegates 12 African countries are represented, with the biggest delegation from Kenya.  Delegates are also from the United States of America, Iran, Turkey, Germany, the Netherlands and Portugal and African countries like Zimbabwe, Mozambique and Botswana.

“Many of our members play an important role in the training of animal scientists at universities.  The congress is specifically industry orientated so that scientists can interact with farmers through the respective producer organisations,” said Prof HO de Waal, Chairperson of the organising committee and lecturer at the UFS Department of Animal, Wildlife and Grassland Sciences.

According to Dr Heinz Meissner, honorary president of SASAS and a senior manager at the Animal Production Institute of the Agricultural Research Council, the National Livestock Strategy (NLS) Plan clarifies the role and responsibility of the livestock sector. 

“Through this strategy we need to focus on enhancing equitable access and participation in livestock agriculture, improve global competitiveness and profitability of the livestock sector and ensure that the ventures implemented do not over utilise our resources,” said Dr Meissner.

In her welcoming address, Prof Magda Fourie, Vice-Rector:  Academic Planning at the UFS highlighted the related challenges that the UFS will be focusing on specifically over the next five years.  “We have identified five strategic clusters that represent broad areas of excellence in research and post-graduate education.  Two of these are food production, quality and safety for Africa and sustainable development,” she said.

“The food safety and security cluster will focus on the production of food in all its varieties within the African context, encompassing the entire value chain – from production to consumption and nutrition related issues.  This would include a strong emphasis on sustainable production systems,” she said.

According to Prof Fourie the rural development cluster will engage in questions around the role of higher education in sustainable development.  “One of the focus areas in this strategic cluster pertains to sustainable livelihoods.  It refers to a way of approaching development that incorporates all aspects of human livelihoods and means by which people obtain them,” she said.

Prof Fourie said that the challenges we are facing such as food production can only be effectively addressed through collaborative efforts.  “That is why it is important that collaboration takes place between different scientific disciplines, researchers, institutions and countries who are confronted with similar difficulties,” she said.

According to Prof de Waal the congress will give key role players a unique opportunity to present a profile of what they perceive an animal scientist should be and state their specific requirement regarding the animal sciences and its applications. 

“In this way we can determine what the industry’s needs are and we can re-align our curriculum to suit these needs,” said Prof de Waal.

During the next two days, various areas of interest will be discussed.  This includes ruminant and monogastric nutrition, animal physiology, beef, dairy, sheep and ostrich breeding and sustainable farming covering the range from commercial to the small-scale farming level.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
4 April 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept