Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

Eye tracker device a first in Africa
2013-07-31

 

 31 July 2013

Keeping an eye on empowerment

"If we can see what you see, we can think what you think."

Eye-tracking used to be one of those fabulous science-fiction inventions, along with Superman-like bionic ability. Could you really use the movement of your eyes to read people's minds? Or drive your car? Or transfix your enemy with a laser-beam?

Well, actually, yes, you can (apart, perhaps, from the laser beam… ). An eye tracker is not something from science fiction; it actually exists, and is widely used around the world for a number of purposes.

Simply put, an eye tracker is a device for measuring eye positions and eye movement. Its most obvious use is in marketing, to find out what people are looking at (when they see an advertisement, for instance, or when they are wandering along a supermarket aisle). The eye tracker measures where people look first, what attracts their attention, and what they look at the longest. It is used extensively in developed countries to predict consumer behaviour, based on what – literally – catches the eye.

On a more serious level, psychologists, therapists and educators can also use this device for a number of applications, such as analysis and education. And – most excitingly – eye tracking can be used by disabled people to use a computer and thereby operate a number of devices and machines. Impaired or disabled people can use eye tracking to get a whole new lease on life.

In South Africa and other developing countries, however, eye tracking is not widely used. Even though off-the-shelf webcams and open-source software can be obtained extremely cheaply, they are complex to use and the quality cannot be guaranteed. Specialist high-quality eye-tracking devices have to be imported, and they are extremely expensive – or rather – they used to be. Not anymore.

The Department of Computer Science and Informatics (CSI) at the University of the Free State has succeeded in developing a high-quality eye tracker at a fraction of the cost of the imported devices. Along with the hardware, the department has also developed specialised software for a number of applications. These would be useful for graphic designers, marketers, analysts, cognitive psychologists, language specialists, ophthalmologists, radiographers, occupational and speech therapists, and people with disabilities. In the not-too-distant future, even fleet owners and drivers would be able to use this technology.

"The research team at CSI has many years of eye-tracking experience," says team leader Prof Pieter Blignaut, "both with the technical aspect as well as the practical aspect. We also provide a multi-dimensional service to clients that includes the equipment, training and support. We even provide feedback to users.

"We have a basic desktop model available that can be used for research, and can be adapted so that people can interact with a computer. It will be possible in future to design a device that would be able to operate a wheelchair. We are working on a model incorporated into a pair of glasses which will provide gaze analysis for people in their natural surroundings, for instance when driving a vehicle.

"Up till now, the imported models have been too expensive," he continues. "But with our system, the technology is now within reach for anyone who needs it. This could lead to economic expansion and job creation."

The University of the Free State is the first manufacturer of eye-tracking devices in Africa, and Blignaut hopes that the project will contribute to nation-building and empowerment.

"The biggest advantage is that we now have a local manufacturer providing a quality product with local training and support."

In an eye-tracking device, a tiny infra-red light shines on the eye and causes a reflection which is picked up by a high-resolution camera. Every eye movement causes a change in the reflection, which is then mapped. Infra-red light is not harmful to the eye and is not even noticed. Eye movement is then completely natural.

Based on eye movements, a researcher can study cognitive patterns, driver behaviour, attention spans, even thinking patterns. A disabled person could use their eye-movements to interact with a computer, with future technology (still in development) that would enable that computer to control a wheelchair or operate machinery.

The UFS recently initiated the foundation of an eye-tracking interest group for South Africa (ETSA) and sponsor a biennial-eye tracking conference. Their website can be found at www.eyetrackingsa.co.za.

“Eye tracking is an amazing tool for empowerment and development in Africa, “ says Blignaut, “but it is not used as much as it should be, because it is seen as too expensive. We are trying to bring this technology within the reach of anyone and everyone who needs it.”

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cell: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept