Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

UFS implements access control measures on our Bloemfontein Campus
2014-11-21



Photo: Hannes Pieterse

Online Application form: non personnel

Map with access gates on the Bloemfontein Campus


Accessing the Bloemfontein Campus from 3 November 2014

Access control during major events on the Bloemfontein Campus

Q&A




The University of the Free State (UFS) has been tightening security measures on its Bloemfontein Campus for quite some time now. Purposefully, we have consolidated several safety measures to keep our students, staff and visitors – the heartbeat of our university – protected.

Our most significant step in this endeavour is now in the process of implementation. All five entrance gates to the campus are being equipped with strict access control.

The first phase of the process was implemented beginning of August 2014. Gates 2 (Badenhorst Street) and 4 (Furstenburg Street) were equipped with card readers. Only persons with valid access cards can enter and leave through these gates. Existing staff and student cards are equipped to be read by the short-distance card readers at the gates in order to activate the booms.

At this stage, staff and students are swiping their cards against the card readers at Gates 2 and 4 or holding it not further than 20 mm from the reader for the boom to open. Card holders now physically stop in front of the boom in order to get access to the campus.  

The duel-frequency card:

The dual-frequency cards available at the Card Division on the Thakaneng Bridge are currently out of stock. New cards will be delivered on Friday 14 November 2014.

The special offer of R30 per access card has been extended to the end of November 2014. To qualify for this offer, staff and students may pay the R30 for a dual-frequency card at the bank or cashiers on the Thakaneng Bridge no later than 28 November.  The cost of dual-frequency cards will increase to R60 per card from 1 December 2014.

Please note that only people with vehicles need to apply for dual-frequency cards.

Students and staff will, however, still be able to gain access to the Bloemfontein Campus with their current cards (in the case of staff and students who haven’t purchased dual-frequency cards yet). As is currently the practice at the gates in Furstenburg and Badenhorst Streets, you will have to stop when you reach the boom, swipe your card past the card reader, the boom will open and you will be able to drive through.

Staff and students using their dual-frequency cards should:

-       Reduce speed
-       Hold the card in a vertical position at the driver’s side window, in the direction of the long-distance reader (see photo)

It is therefore not necessary to stop in front of the boom. On holding your card upright, in line with the card reader, the gate will open automatically and you will be able to drive through (keep your card outside your window; the card reader cannot operate through tinted windows).

Please note that this arrangement only applies to incoming lanes. On leaving the campus, the card has to be swiped. This is due to the number-plate recognition technology installed at exits for additional security.

If the long-distance reader does not work, the dual-frequency card can still be used at a tag reader. 

Applying for your new card:

Electronic fund transfers: Absa Bank: 1 570 8500 71, Ref: 1 413 07670 0198, OR pay the R30 at the UFS Cashiers, Thakaneng Bridge. Please note that the price of the cards will increase to R60 from 1 November 2014.

Take your existing personnel or student card, together with proof of payment, to the UFS Card Division, Bloemfontein Campus, Thakaneng Bridge, to have your photo taken and your new dual-frequency card issued.

Permission to access specific UFS buildings or facilities linked to your existing card, will be automatically linked to the new card.

The new card is marked ‘dual’ on the back in the right, bottom corner.

The UFS Cashiers will provide assistance between 09:00 and 14:30, and the UFS Card Division between 09:00 and 15:00.

Implementation of full access control


Full access control will be implemented on the UFS’s Bloemfontein Campus from 3 November 2014. This means that access control will be implemented at all gates on the Bloemfontein Campus.

Who is using which gate? See Q&A for more information.


Gate 3 (Wynand Mouton Drive) is earmarked for use by official card holders. These include students, staff and persons doing business on campus. Parents dropping and fetching their children for sports, as well as service providers of the UFS, such as architects, may apply for valid cards. These persons will have to provide proof that they have business on campus (complete online application form and sign declaration).

All visitors to the campus will be referred to the Visitor’s Centre at Gate 5 (DF Malherbe Drive). This include, among others, parents, family and friends of students, as well as conference delegates. It is estimated that the Visitor’s Centre will be completed at the end of November (note that the gate at DF Malherbe Drive will be operational by 3 November 2014). Visitors will sign in at the Visitor’s Centre and, depending on the business they have on campus, they will only be allowed on campus for a certain period of time.

•    Lane 1 at Gate 5 will be used by visitors and service providers to enter the campus. Only card holders will be able to use lane 2.
•    Buses and trucks can also enter the campus through Gate 5.

The construction at the Main Gate at Nelson Mandela Drive is to build one extra lane for incoming traffic. The project is estimated to be completed at the end of October 2014.

•    For outgoing traffic, lane 1 (furthest from the guardhouse) and lane 2 will only be used by card holders and lane 3 (closest to the booth) will be used by service providers.
•    For incoming traffic, lanes 2 and 3 were set aside for use by only service providers. Lanes 1 and 4 will be used by only card holders.

Pedestrians

All gates for motorists will also be equipped with a pedestrian thoroughfare on completion of the project. Persons using these pedestrian gates also need to use their cards to get access to the campus.

Pedestrians who are visitors, but aren’t in possession of a valid access card, should please go to the Visitor’s Centre at the gate in DF Malherbe Drive where they will be helped.

More information

For more information on access control at the UFS, please watch our videos and read the Q&A or e-mail your enquiries to accesscontrol@ufs.ac.za.  


Issued by:    Lacea Loader (Director: Communication and Brand Management)
Tel: +27(0)51 401 2584 | +27(0)83 645 2454
E-mail: news@ufs.ac.za


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept