Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

R40 million construction contract with black empowerment group starts at UFS
2006-09-04

During the ceremonial kick-off of the biggest construction project in the history of the UFS were from the left: Ms Vuyiwe Mkhupha (Manager of   Sikeyi Construction), Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS) and Prof Steve Basson (Head of the UFS Department of Chemistry). Photo: (Gerhard Louw)

R40 million construction contract with black empowerment group starts at UFS   

The biggest construction contract in the history of the University of the Free State (UFS) to the value of R40 million has started on the Main Campus in Bloemfontein.  The contractors are Ströhfeldt Construction, in a joint venture with Sikeyi Construction, a black empowerment partner.

The contract comprises the extensive modernising, refurnishing and extension of the Chemistry Building.  This is the highest amount the UFS has ever spent on the refurnishing of a building. 
 
A number of initiatives have contributed to the fact that the UFS Department of Chemistry is one of the foremost chemistry departments in the country:
 

  • Expensive equipment and apparatus to the value of almost R20 million were acquired by the department the past year;
  • The basis of this is a strategic partnership with Sasol, the biggest research and development company  in the country;
  • The purchase of the most advanced 600MHz nuclear magnetic resonance spectro meter in Africa;
  • The purchase of a single crystal X-ray diffractometer; and
  • The purchase of a differential scanning calorie meter, used to test the effect of heat on chemicals.  This apparatus comprises of the most advanced detectors in the world.

“Natural scientists need the necessary equipment, apparatus and laboratories to be able to exercise world-class science.  Three years ago the UFS top management made a strategic decision to focus strongly on research and on our  laboratories and lecture halls,“ said Prof Frederick Fourie, Rector and Vice-Chancellor of the UFS, during the launch of the Chemistry Building’s refurbishment.

“I regard this project as a symbol of our investment in science and the academy,“ said Prof Fourie.

Prof Fourie said that the UFS spent almost R100 million in the last 5 years to renovate the Main Campus.  New buildings such as Thakaneng Bridge were built and other such as the Reitz Dining Hall was renovated and converted into the Centenary Complex.  “These projects, together with the refurbishment of the Chemistry Building, also show how the UFS contributes to the development and growth of not only Bloemfontein, but also how we invest in the Free State,“ said Prof Fourie.

According to Ms Edma Pelzer, Director: Physical Planning and Special Projects at the UFS, the current building originally comprised of the Moerdyk Building built in 1949 and a newer wing built in 1966.  This building became too small and obsolete and a new part is now being added to the eastern side.
  
According to Ms Pelzer a great deal of the project comprises the dramatic upgrading and modernising of laboratories, existing mechanical systems and the installation of new systems.  “The nature of the work of staff and students demands sophisticated mechanical systems such as air conditioning, fume hoods, the provision of gas, etc and therefore these received specific attention.  The research laboratories, lecture laboratories and office areas will also be separated for safety and greater efficiency,” said Ms Pelzer.

“Interesting design solutions for the complex needs of the department were found and I foresee that the building and its immediate environment will be an adornment to the Main Campus after its expected completion in 2008,” said Ms Pelzer.

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
14 September 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept