Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

IRSJ marks five years of championing social justice
2016-08-12

Description: IRSJ 5 year Tags: IRSJ 5 year

Members of the Advisory Board of the IRSJ,
Prof Michalinos Zembylas (Open University
of Cyprus), Prof Shirley Anne Tate (Leeds
University, England), and Prof Relebohile
Moletsane (University of KwaZulu-Natal),
listen to a speaker on the programme.
Photo: Lihlumelo Toyana

The Institute for Reconciliation and Social Justice (IRSJ) marked its fifth anniversary with a function on 27 July 2016 in the Reitz Hall of the Centenary Complex on the Bloemfontein Campus of the University of the Free State (UFS). Earlier that day, the Advisory Board of the IRSJ, chaired by Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS, hosted their annual meeting.

A new book was also launched, co-authored by JC van der Merwe, Deputy-Director at the IRSJ and Dionne van Reenen, researcher and PhD candidate at the IRSJ. It is entitled Transformation and Legitimation in Post-apartheid Universities: Reading Discourses from ‘Reitz’. The function featured not only reflections on the IRSJ, but a four-member panel discussion of the book and higher education in 2016.

The IRSJ came into being officially at the UFS in January 2011. Prof André Keet, Director of the IRSJ, said: “With a flexibility and trust not easily found in the higher education sector, the university management gave us the latitude and support to fashion an outfit that responds to social life within and outside the borders of the university, locally and globally.”

The IRSJ has not hesitated to be bold and
courageous in reforming ... traditional policies."

 

Prof Jansen went on to mention three things he finds appealing about the IRSJ: “Thanks to Prof Keet and his team’s vision and understanding of how important it is for students to have a space in which they can learn how to be, learn how to think, and learn how to contribute, the IRSJ has become a place where students can learn about things that they might not learn in the classroom. Second, it created, for the first time, a space where members of the LGBTIQ community could gather in one place. And third, it speaks to the intellectual life of the university, as evidenced by the research and publications produced over the past few years.”

Prof Jansen added: “The IRSJ will only be successful to the extent that we have safe spaces, courageous spaces, in which not only black students talk to themselves, but where black and white students talk together about their difficulties. If you’re entangled, you can’t get out of [that] unless you speak to the other person.”

Read More

Prof Michalinos Zembylas of the Open University of Cyprus and member of the Advisory Board, said of the IRSJ: “The works produced by the institute in this short time have been valuable to this community and beyond, because they recognise the complexities of education, ... while pushing the boundaries of how to translate theoretical discussions into practical, everyday conditions. ... For example, the IRSJ has not hesitated to be bold and courageous in reforming some traditional policies in this university—remnants of an ambivalent past that reproduced inequality and disadvantage.

In reflecting on how the IRSJ came into being during her opening remarks, Dr Lis Lange, Vice-Rector: Academic at the UFS, said that it has always been “dedicated to transformation.” She added that it “gathered the energy and creativity of some of our most promising student leaders.” She concluded: “For me, the greatest success of the Institute, besides publications and local and international networks, is the fact that something that started in the margins is being asked today to come closer to the centre, to play a larger role in the structural transformation of the university.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept