Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2024 | Story Leonie Bolleurs | Photo Supplied
Yolandi Schoeman
Dr Yolandi Schoeman is redefining the future of ecological restoration with innovative solutions for both Earth and space.

Dr Yolandi Schoeman, a Senior Lecturer in Ecological Engineering in the Centre for Mineral Biogeochemistry at the University of the Free State (UFS) and the Ecological Engineering Institute of Africa, was fascinated by the synergy between engineering and the natural sciences from a young age.
 
She said that the potential within ecological engineering to regenerate ecosystems at all scales, from the microscopic to vast landscapes, really drew her in. “This field offers solutions not only for daily sustainability challenges but also for the threats to planetary health and human well-being. However, when I was starting out, ecological engineering wasn't recognised as a formal career path in South Africa, and studying it in the United States wasn't feasible for me at the time. So, I explored various educational paths in civil engineering and natural sciences, aiming to merge these disciplines in my projects and research. My ultimate goal has been to establish and develop the field of ecological engineering both in South Africa and across Africa,” she explained. 

Conventional and extreme ecological engineering

Dr Schoeman’s work in ecological engineering spans two main areas: conventional and extreme ecological engineering. On the conventional side, she says she is focusing on projects like designing constructed wetlands to naturally treat water, implementing urban greening initiatives to cool cities and manage stormwater, and regenerating various habitats to strengthen biodiversity. In terms of extreme ecological engineering, she focuses on developing innovative solutions for ecosystems that have been severely impacted by disasters like industrial accidents or natural calamities. 

Additionally, she is leading efforts in astro-ecological engineering, applying these principles to rehabilitate severely damaged terrestrial environments while exploring their potential for extraterrestrial applications, advancing both sustainability and ecological restoration.

There are two moments in her journey that Dr Schoeman recalled helped shape her career. One was being invited to participate in the 2006 Brightest Young Minds initiative, hosted by the University of Stellenbosch. She said that it was the first platform where she could really develop and share her ideas and vision in ecological engineering. “I contributed to a publication titled Engineering Engineering, which focused on integrating nature into every facet of development and operations. That experience validated my vision of combining engineering and natural systems.”

The other experience came during her studies in Executive Leadership at the Skolkovo School of Management in Moscow. “I was tasked with leading a multidisciplinary, international team that had to create a sustainability strategy for a major international iron, steel and vanadium company. The project pushed me to defend sustainability solutions that would alter the way this industrial giant operated. It was a deeply challenging process that changed my perception of true sustainability and what it means to deliver solutions that are both impactful and make business sense. That moment forced me to step out of the comfort zone of conventional sustainability and reorient my path toward pursuing solutions that seemed almost impossible, but necessary.”

Advancing ecological engineering across Africa

Two of the most important research projects she has been involved in include advancing ecological engineering across Africa and restoring and managing ecosystems that are considered beyond conventional repair. The first project involved establishing an international institution that spearheads various innovative research areas, including exploring floating treatment wetlands, different types of constructed wetlands, and technologies for smarter ecosystem management in urban and rural contexts. “This comprehensive project has substantially elevated the global understanding and application of ecological engineering, addressing a spectrum of sustainability challenges,” she said.

In the second project she worked with a team that tackled severely degraded environments like post-mining landscapes, heavily polluted industrial sites, and areas where ecosystem functionality has been drastically compromised. She also aims to develop the projects further and to collaborate with agencies like NASA to design life-support systems for future space habitats. “These systems are not limited to space applications, but are also designed to address complex planetary health issues in extreme environments on Earth, such as war zones, nuclear disaster areas, and sites affected by climatic catastrophes,” she remarked.

Dr Schoeman is also responsible for the "Astroecological Engineering System" (AES). “This system uniquely integrates terrestrial ecological engineering principles with astro-ecological technologies to deal with some of the most challenging environmental restoration projects on Earth and potentially in future space habitats,” she stated, adding that AES is specifically designed for restoring heavily degraded or contaminated ecosystems – situations where traditional restoration methods are inadequate. 

Pushing the boundaries of what’s possible 

She believes AES is a versatile tool for addressing some of the most daunting environmental challenges we currently face. This passion for handling seemingly insurmountable problems is what drives her work. 

“These are the issues that often push the boundaries of what's possible in ecological engineering. Each project that seems 'impossible' provides an opportunity not just to solve a problem, but to innovate and create methods that can be applied globally. It's about turning what was once thought unachievable into tangible, impactful realities that improve our environment and our relationship with the natural world. I truly believe that humanity holds the pen that can rewrite our future.”

About the future, she says that over the next 15 years she would like to see extreme ecological engineering, supported by astro-ecological insights, evolve into a foundational strategy in global environmental management. This approach will be key in scenarios where traditional restoration methods are inadequate. “My goal is to integrate these advanced, resilient techniques into mainstream disaster response and urban planning processes worldwide, preparing ecosystems and communities to withstand and adapt to future ecological stresses,” she said.

She also envisions a future where the principles of extreme and astro-ecological engineering are routinely taught in academic institutions and incorporated into public policy. “By raising awareness and building expertise on a global scale, I aim to cultivate a new generation of engineers – those who are not only equipped to take on severe environmental crises on Earth but are also prepared for the ecological challenges we may face in space. This ambitious vision drives a shift towards more resilient and adaptive management of Earth's ecosystems, ensuring they thrive amidst the challenges of the 21st century.”

News Archive

Power shortage: Measures to be implemented immediately
2008-01-31

1. In order to avoid the further implementation of power sharing, electricity companies countrywide are requiring, in addition to measures announced for domestic consumers, that major power consumers save a certain percentage of power.

2. Die UFS is one of the 100 largest clients of Centlec, the local electricity distribution company. During a meeting last Thursday evening with the 100 largest clients, it was indicated that the UFS had to deliver a saving of 10%. The details are as follows:

  • Provision is made to a certain extent for an increase in electricity consumption. The calculation is done as follows: maximum consumption for 2007+6%-10%.
  • This entails a saving during peak times, as well as a saving regarding the total number of units consumed.
  • The saving is calculated on a monthly basis.
  • Saving measures must be implemented immediately (from 7 March). If electricity-saving goals are not attained, power sharing will be resumed from 10 March.

3. The UFS has been controlling its peak demand by means of an energy control system for many years. The geysers of residences and certain central air-conditioning systems were linked to the control system in order to shift energy consumption to non-peak times.

4. In order to attain the goal of 10%, it is necessary to implement further energy control systems and additional measures – which requires time and money. Attention will have to be given, inter alia, to the following:

  • The 1000+ portable air-conditioning units on the campus (huge power guzzlers) must be connected to energy control appliances and systems.
  • All the filament bulbs must be replaced.

7. The UFS will be conducting high-level talks with Centlec later this week with a view to:

  • conveying the unique needs of the UFS in detail;
  • stating the impact of building and refurbishing projects that are currently in the implementation and planning phases;
  • requesting understanding for the fact that the UFS does not have the capacity to immediately deliver the 10% saving.
     

It is evident from discussions thus far that Centlec is sympathetic and wants to help, but also that immediate action and co-operation are expected from the UFS. During the meeting, the UFS must also report back on steps already taken (since 7 March) in this regard.

8. The installation of the emergency power units for the large lecture-hall complexes and a few other critical areas, which has already been approved, is continuing. About R3m is being spent on this. Additional emergency power needs reported to Physical Resources via line managers are currently being investigated with a view to obtaining a cost estimate and subsequently determining priorities in consultation with line managers.

It is recommended that:

a) All line managers, staff members and students be requested to give their full co-operation with regard to saving electricity in every possible way, and that current operational arrangements be amended if possible with a view to promoting power saving. 

Staff, students and other users of campus facilities be requested to see to it that lights and air conditioning (individual units) in unused areas are switched off.

b) The following measures drawn up in co-operation with electrical engineers come into effect immediately:

Arrangements to be made by Physical Resources staff:
(Additional capacity to be able to complete everything within a reasonable period of time will have to be found and funded. This aspect will be taken up with the line managers concerned):

  • The geysers of all office buildings will be switched off at the distribution board. Staff are requested to use a kettle for washing dishes, and are warned not to switch appliances on again themselves.
  • In all office buildings where 12V and 15W downlighters and uplighters remain switched on for decorative purposes and do not serve as primary illumination, the light switches will be disconnected.
  • Lighting in cloakrooms will be checked, and illumination levels will be reduced if possible.
  • All light armatures must be replaced by CFL types.
  • All lights on the grounds will be checked to ensure minimum power consumption.
  • The upper limit of all central cooling systems currently regulated via the energy control system must be set to 24 degrees.

Arrangements to be made by Kovsie Sport:

  • Sport activities requiring sports field illumination must be scheduled after 20:00 in the evening (the lights may not be on between 18:00 and 20:00.)
  • Sports field illumination must be managed so that such lights are not switched on unnecessarily.
     

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept